refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 837 results
Sort by

Filters

Technology

Platform

accession-icon GSE51882
Early Mouse Hepatic Stellate Cell Activation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Early during culture of primary mouse HSCs gene expression changes.

Publication Title

Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE153703
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.

Publication Title

The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36903
Gene regulation by the lysine demethylase KDM4A in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Lysine methylation of histones is associated with both transcriptionally active chromatin and with silent chromatin, depending on what residue is modified. Histone methyltransferases and demethylases ensure that histone methylations are dynamic and can vary depending on cell cycle- or developmental stage. KDM4A demethylates H3K36me3, a modification enriched in the 3end of active genes. The genomic targets and the role of KDM4 proteins in development remain largely unknown.

Publication Title

Gene regulation by the lysine demethylase KDM4A in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4219
Spheroid Formation and Recovery of Human Foreskin Fibroblasts and T98G Glioma Cells at Ambient Temperature
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Activated stress response pathways within multicellular aggregates utilize an autocrine component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4218
Spheroid Formation and Recovery of Human T98G Glioma Cells at Ambient Temperature
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mammalian cells were grown as multicellular aggregates (spheroids) in an effort to determine the signaling events required for two cellular transformations states; primary foreskin fibroblasts (HFF-2) and glioblastoma cancer (T98G) cells, to survive at room temperature under oxygen and nutrient-deprived conditions for extended periods of time (2 weeks) and subsequently grown out from the arrested state as adherent monolayers. HFF-2 cells were cultured in DMEM supplemented with 15% fetal bovine serum and 5% carbon dioxide humidified air at 37 degrees C. T98G cells were cultured in EMEM with 10% FBS, 5% non-essential amino acids and 5% carbon dioxide humidified air at 37 degreesC. Monolayers were grown in T-185 flasks to 60% confluency then split into T-185 flasks coated with a 1% agarose mix in a 2:1 media/water ratio. Cells were suspended in 30 ml of supplemented media and grown for 4 days in order to form multicellular spheroids as described previously by our group (J. Cell. Physiol., 206 [2006] 526-536; see GSE1364 and GSE1455 for similar experiments with HEK293 cells). The suspension was removed from the flasks and centrifuged (1500 x g, 2 min) and the media removed. The pellet was returned to the flasks and then placed in vacuum bags (Dri-shield 2000 moisture barrier bag from Surmount Inc., USA; Cat. number 70068), which were sealed immediately under vacuum (Deni Magic Vac, Champion model; Keystone Manufacturing, USA). Vacuum-sealed flasks were stored for 2 weeks (in the dark) at room temperature. Recovery was initiated by removing the flask from the bag and resuspending the spheroids in supplemented media and placing the flasks in a 5% CO2/humidified air incubator maintained at 37 degreesC. Timepoints for transcriptional analysis were monolayer (control), 4 day growth spheroids, 2 week stored spheroids and 7 day growth back to monolayers.

Publication Title

Activated stress response pathways within multicellular aggregates utilize an autocrine component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4217
Spheroid Formation and Recovery of Human Foreskin Fibroblasts at Ambient Temperature
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mammalian cells were grown as multicellular aggregates (spheroids) in an effort to determine the signaling events required for two cellular transformations states; primary foreskin fibroblasts (HFF-2) and glioblastoma cancer (T98G) cells, to survive at room temperature under oxygen and nutrient-deprived conditions for extended periods of time (2 weeks) and subsequently grown out from the arrested state as adherent monolayers. HFF-2 cells were cultured in DMEM supplemented with 15% fetal bovine serum and 5% carbon dioxide humidified air at 37 degrees C. T98G cells were cultured in EMEM with 10% FBS, 5% non-essential amino acids and 5% carbon dioxide humidified air at 37 degreesC. Monolayers were grown in T-185 flasks to 60% confluency then split into T-185 flasks coated with a 1% agarose mix in a 2:1 media/water ratio. Cells were suspended in 30 ml of supplemented media and grown for 4 days in order to form multicellular spheroids as described previously by our group (J. Cell. Physiol., 206 [2006] 526-536; see GSE1364 and GSE1455 for similar experiments with HEK293 cells). The suspension was removed from the flasks and centrifuged (1500 x g, 2 min) and the media removed. The pellet was returned to the flasks and then placed in vacuum bags (Dri-shield 2000 moisture barrier bag from Surmount Inc., USA; Cat. number 70068), which were sealed immediately under vacuum (Deni Magic Vac, Champion model; Keystone Manufacturing, USA). Vacuum-sealed flasks were stored for 2 weeks (in the dark) at room temperature. Recovery was initiated by removing the flask from the bag and resuspending the spheroids in supplemented media and placing the flasks in a 5% CO2/humidified air incubator maintained at 37 degreesC. Timepoints for transcriptional analysis were monolayer (control), 4 day growth spheroids, 2 week stored spheroids and 7 day growth back to monolayers.

Publication Title

Activated stress response pathways within multicellular aggregates utilize an autocrine component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043599
Transcriptional changes in murine adrenal glands after TSPO deletion
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor is a protein of unclear function in the outer mitochondrial membrane. Using TSPO gene-deleted mice, we recently demonstrated that the dogma surrounding mammalian TSPO as a cholesterol transporter essential for steroid hormone production is highly inaccurate. TSPO global knockout mice are apparently healthy and do not have any deficits in steroid hormone production. We present whole transcriptome shotgun sequencing data comparing adrenal gene expression between Tspo floxed (Tspofl/fl) and Tspo knockout (Tspo-/-) mice.

Publication Title

Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15236
Expression profiling of the Arabidopsis Mediator complex mutant pft1/med25 and wildtype infected with Fusarium oxysporum
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Mediator complex is an evolutionary conserved multiprotein complex that plays an essential role in initiating and regulating transcription. Its function is to act as a universal adaptor between RNA Polymerase II and DNA-bound transcription factors to translate regulatory information from activators and repressors to the transcriptional machinery. We have found that the PFT1 gene (which encodes the MED25 subunit of the Mediator complex) is required for the uncompromised expression of both salicylic acid- and jasmonate-dependent defense genes as well as resistance to the leaf-infecting fungal pathogens, Alternaria brassicicola and Botrytis cinerea in Arabidopsis. Surprisingly, we found that the pft1/med25 mutant showed increased resistance to the root infecting pathogen Fusarium oxysporum and that this resistance was independent of classical defense genes. In addition, the over-expression of PFT1 led to increased susceptibility to F. oxysporum. Therefore, to explore this phenomenon further, we wished to use whole genome transcript profiling to identify which genes may be playing a role in pft1/med25-mediated resistance to F. oxysporum.

Publication Title

The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE61884
Expression profiling of wild-type Arabidopsis and an activation-tagged jaz7-1D line.
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Jasmonate (JA) signaling plays a key role in mediating both resistance and susceptibility to the root-infecting fungal pathogen Fusarium oxysporum. Within this system, the roles of the JA-signaling repressor gene family of JASMONATE ZIM-domain (JAZ) genes had not been investigated. By screening JAZ T DNA insertion lines for altered resistance or susceptibility to F. oxysporum, we identified a JAZ7 mutant (jaz7-1D) highly susceptible to F. oxysporum infection. Further analyses revealed jaz7-1D exhibits constitutively active JAZ7 expression, enhanced expression of JA-defense marker genes, and increased sensitivity to JA-inhibition of root elongation. To further explore altered JA-signaling and JA-responses in this mutant, we use whole transcriptome profiling of jaz7-1D versus wild-type (Col-0) plants after mock/control and JA treatment.

Publication Title

Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE25513
AMPK and calcineurin induced longevity is mediated by CRTC-1 and CREB
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

AMPK (AAK-2) and calcineurin (TAX-6) mediate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC (CREB regulated transcriptional coactivator).

Publication Title

Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact