refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon GSE44065
KRAB/KAP1-microRNA cascade regulates erythropoiesis through the stage-specific control of mitophagy
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE44063
KRAB/KAP1-microRNA cascade regulates erythropoiesis through the stage-specific control of mitophagy [array]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

A multilayered transcription regulatory system is unveiled, where protein- and RNA-based repressors are super-imposed in combinatorial fashion to govern the timely triggering of an essential step of erythropoiesis

Publication Title

A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25076
Hypothalamic expression differences between hypertensive BPH/2J and normotensive BPN/3J mouse strains
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identification of hypothalamic genes whose expression differs between high blood pressure (BPH/2J) and normal blood pressure (BPN/3J) Schlager mouse strains at age 6 weeks (young) and 26 weeks (mature) using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

Publication Title

Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26007
Hypothalamic expression differences between hypertensive BPH/2J during circadian variations of blood pressure
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Identification of hypothalamic genes whose expression differs between active (peak of blood pressure) and inactive periods in the high blood pressure (BPH/2J) Schlager mouse, adjusted by their age- and activity-matched normal blood pressure (BPN/3J) controls using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays.

Publication Title

Genes influencing circadian differences in blood pressure in hypertensive mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE25675
Identification and functional analysis of novel genes expressed in the Anterior Visceral Endoderm
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

During early development, the correct establishment of the body axes is a critical step. The anterior pole of the mouse embryo is established when Distal Visceral Endoderm (DVE) cells migrate to form the Anterior Visceral Endoderm (AVE). Asymmetrical expression of Lefty1, Cerl and Dkk determines the direction of DVE migration and the future anterior side. Besides being implicated in the establishment of Anterior-Posterior axis the AVE has also been correlated with anterior neural specification. In order to better understand the role of the AVE in these processes, this cell population was isolated using a cerlP-EGFP transgenic mouse line, and a differential screening was performed using Affymetrix GeneChip technology. From this differential screening, 175 genes were found to be upregulated in the AVE, whereas 35 genes were upregulated in the Proximal-posterior sample. Using DAVID, here we characterize the AVE cell population regarding cellular component, molecular function and biological processes. Among the genes that were found to be upregulated in the AVE, several novel genes with expression in the AVE were identified. Four of the identified transcripts displaying high-fold change were further characterized by in situ hybridization in early stages of development in order to validate the screening. From those four selected genes, ADTK1 was chosen to be functionally characterized by targeted inactivation in ES cells. ADTK1 encodes for an unknown serine/threonine kinase. ADTK null mutants present short limbs and defects in the eye and ear. Taken together, these data point to the importance of reporting novel genes present in the AVE.

Publication Title

Identification and functional analysis of novel genes expressed in the Anterior Visceral Endoderm.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38333
Genome-wide effects of Pbcas4 knockdown
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We tested the effect iof Pbcas4 knockdown using a specific shRNA on the expression of genes sharing miRNA binding sites in mouse N2A cells.

Publication Title

Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP028399
Transcription Start Site analysis of Mouse Ter119+ erythroid cells
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcription Start Site analysis in Mouse Ter119+ erythroid cells Overall design: Strand Specific Paired end NanoCage analysis of Total RNA from Mouse Ter119+ erythroid cells

Publication Title

Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP028397
Transcriptome analysis of Mouse Ter119+ erythroid cells [PolyA+]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of gene expression in Mouse Ter119+ erythroid cells Overall design: Paired end RNA-seq analysis of PolyA selected RNA from Mouse Ter119+ erythroid cells

Publication Title

Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE28260
Renal cortex and medulla microRNA and mRNA expression differences between hypertensive and normotensive patients
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39252
Expression changes in Caenorhabditis elegans xpa-1 mutant
  • organism-icon Caenorhabditis elegans
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Background: The ability of an organism to repair DNA damage is implicated in carcinogenesis and aging. Interestingly expression profiling of Nucleotide Excision Repair (NER) deficient segmental progeroid mice revealed gene expression changes resembling these observed in aged wild type animals. Our previous transcriptional profiling of NER-deficient C. elegans xpa-1 mutant showed overrepresentation of genes involved in lifespan determination and upregulation of several oxidative stress response genes (Fensgard et al. Aging 2010). However, since an independent study performed by Boyd and coworkers (Boyd et al. Mut Res 2010) showed limited number of changes in xpa-1 mutant. Therefore to independently validate that transcriptome modulation does take place in xpa-1 mutants, we performed another global gene expression profiling based on 5 independent biological replicates allowing more stringent statistical analysis. Results: In agreement with what was observed by Boyd and coworkers (Boyd et al. Mut Res 2010) current transcriptomic analysis detected fewer changes in xpa-1 C. elegans mutant with only a few genes regulated more than 4-fold. Nevertheless, Gene Ontology (GO) enrichment analysis performed on statistically significantly regulated unique protein coding genes revealed overrepresentation of aging gene cluster. Moreover, as before, overexpression of several genes involved in oxidative stress responses was detected. Conclusion: More stringent statistical analysis predictably resulted in a smaller number of regulated genes and thus overrepresented GOs comparing to the earlier paper. However, major conclusions of the previous study can be still regarded as valid, as the most important aging GO is still overrepresented.

Publication Title

Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact