refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon SRP020625
Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

TFIID is a central player in activated transcription initiation. Recent evidence suggests that the role and composition of TFIID is more diverse than previously understood. To investigate the effects of changing the composition of TFIID in a simple system we depleted TAF1 from Drosophila cells and determined the consequences on metal induced transcription at an inducible gene, Metallothionein B (MtnB). We observe a marked increase in the levels of both the mature message and pre-mRNA in TAF1 depleted cells. Under conditions of continued metal exposure, we show that TAF1 depletion increases the magnitude of the initial transcription burst, but has no effect on the timing of that burst. We also show that TAF1 depletion causes delay in the shut-off of transcription upon removal of the stimulus. Thus TAFs are involved in both establishing an upper limit of transcription during induction and efficiently turning the gene off once the inducer is removed. Using genomewide nascent-seq we identify hundreds of genes that are controlled in a similar manner indicating that the findings at this inducible gene are likely generalizable to a large set of promoters. There is a long-standing appreciation for the importance of the spatial and temporal control of transcription. Here we uncover an important third dimension of control, the magnitude of the response. Our results show that the magnitude of the transcriptional response to the same signaling event, even at the same promoter, can vary greatly depending on the composition of the TFIID complex in the cell. Overall design: Nascent RNA was sequenced from replicate samples of Drosophila S2 cells treated with double-stranded RNA directed against E. coli LacI (Control) or against Drosophlia TAF1 (experimental). Reads per kilo-base per million (RPKM) was determined for each gene and the control and experimental samples were compared to determine the genes that were affected by the depletion of TAF1.

Publication Title

Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP106195
A SRp55-regulated alternative splicing network controls pancreatic beta cell survival and function
  • organism-icon Homo sapiens
  • sample-icon 179 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Progressive failure of insulin-producing beta cells is the central event leading to diabetes, yet the signalling networks controlling beta cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining function and survival of human beta cells. RNA-seq analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion and JNK signalling. Specifically, SRp55-mediated splicing changes modulate the function of the pro-apoptotic proteins BIM and BAX, JNK signalling and endoplasmic reticulum stress, explaining why SRp55 depletion triggers beta cell apoptosis. Furthermore, SRp55 depletion inhibits beta cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human beta cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55 that may crosstalk with candidate genes for diabetes. Overall design: Five independent preparations of EndoC-ßH1 cells exposed to control (siCTL) or SRp55 (siSR#2) siRNAs

Publication Title

SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE42090
The innate and adaptive immune response to BCG stimulation in splenocytes taken from C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.

Publication Title

Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE64442
Functional role of miRNAs in the renal stroma during embryonic kidney development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033129
Differential gene expression in nephron progenitors lacking miR-17~92
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study is to compare the differential expression of transcripts in control kidneys compared to kidneys lacking the miR-17~92 cluster in nephron progenitors and their derivatives by RNA-seq to identify potential miRNA targets in the mutant kidneys. Overall design: mRNA profiles of control and mutant (=Six2-TGC; miR-17~92 flx/flx) embryonic day 16 kidneys were generated by deep sequencing, in triplicate, using Illumina HiSeq2000

Publication Title

MicroRNA-17~92 is required for nephrogenesis and renal function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64440
Gene expression profiling of E15.5 FoxD1 Cre;Dicer and control embryonic kidneys
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E15.5 whole kidneys to determine the transcriptional changes.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64441
Gene expression profiling of E18.5 FoxD1 Cre;Dicer and control embryonic kidneys
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E18.5 whole kidneys to determine the transcriptional changes.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP193059
Identification of a pro-angiogenic functional role for FSP1 positive fibroblast subtype in wound healing
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA sequencing was performed on uninjured, and injured (FSP1, and aSMA expressing) fibroblasts from mice hearts. Fibrosis accompanying wound healing can drive the failure of many different organs. Activated fibroblasts are the principal determinants of post-injury pathological fibrosis as well as physiological repair, making them a difficult therapeutic target. Fibroblasts are a heterogeneous cell population lacking unique functional classification. We demonstrated that FSP1 and aSMA expressing cells are distinct, post-injury fibroblasts in the heart, kidney, and skin and exhibit unique temporal expression patterns. Using mice that express GFP under the FSP1 or aSMA promoters, we isolated these fibroblasts from mouse hearts after myocardial infarction. Protein and transcript arrays, cellular assays as well as in vivo granulation tissue formation were used to determine their functional role(s) in healing and fibrosis. Whereas aSMA+ fibroblasts predominated in producing matrix proteins, FSP1+ fibroblasts significantly promoted angiogenesis. These studies have the potential to shift our focus towards viewing fibroblasts not only molecularly but also as functionally heterogeneous and provide a new paradigm with which to approach treatment for organ fibrosis. Overall design: Fibroblasts were isolated from uninjured BL6 mice for control. FSP1 and aSMA expressing fibroblasts were isolated from transgenic mice that express GFP under FSP1 or aSMA promoter. GFP positive cells were freshly sorted 10 days following myocardial infarction from mice ventricles. RNA was prepared using Ambion RNAqueous kit and submitted for RNA sequencing.

Publication Title

Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE18618
Transcriptional Signature and Memory Retention of Human-induced Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transient expression of two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference.

Publication Title

Transcriptional signature and memory retention of human-induced pluripotent stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE145574
Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.

Publication Title

Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact