refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2103 results
Sort by

Filters

Technology

Platform

accession-icon GSE64442
Functional role of miRNAs in the renal stroma during embryonic kidney development
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033129
Differential gene expression in nephron progenitors lacking miR-17~92
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goal of this study is to compare the differential expression of transcripts in control kidneys compared to kidneys lacking the miR-17~92 cluster in nephron progenitors and their derivatives by RNA-seq to identify potential miRNA targets in the mutant kidneys. Overall design: mRNA profiles of control and mutant (=Six2-TGC; miR-17~92 flx/flx) embryonic day 16 kidneys were generated by deep sequencing, in triplicate, using Illumina HiSeq2000

Publication Title

MicroRNA-17~92 is required for nephrogenesis and renal function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64440
Gene expression profiling of E15.5 FoxD1 Cre;Dicer and control embryonic kidneys
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E15.5 whole kidneys to determine the transcriptional changes.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64441
Gene expression profiling of E18.5 FoxD1 Cre;Dicer and control embryonic kidneys
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The aim of this study is to address the functional role of miRNAs in the FoxD1+ renal stroma progenitors and derivatives during embryonic kidney development. To achieve this, we generated transgenic mice that lack miRNAs in the renal stroma lineage (FoxD1 Cre;Dicer), and performed a microarray analysis on E18.5 whole kidneys to determine the transcriptional changes.

Publication Title

Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP111129
Primary spinal OPC culture system from adult zebrafish to study oligodendrocyte differentiation in vitro
  • organism-icon Danio rerio
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neuron. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. Overall design: DEG analysis of primary OPC and OL populations, 5 biological replicates per population

Publication Title

Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation <i>In Vitro</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP020625
Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

TFIID is a central player in activated transcription initiation. Recent evidence suggests that the role and composition of TFIID is more diverse than previously understood. To investigate the effects of changing the composition of TFIID in a simple system we depleted TAF1 from Drosophila cells and determined the consequences on metal induced transcription at an inducible gene, Metallothionein B (MtnB). We observe a marked increase in the levels of both the mature message and pre-mRNA in TAF1 depleted cells. Under conditions of continued metal exposure, we show that TAF1 depletion increases the magnitude of the initial transcription burst, but has no effect on the timing of that burst. We also show that TAF1 depletion causes delay in the shut-off of transcription upon removal of the stimulus. Thus TAFs are involved in both establishing an upper limit of transcription during induction and efficiently turning the gene off once the inducer is removed. Using genomewide nascent-seq we identify hundreds of genes that are controlled in a similar manner indicating that the findings at this inducible gene are likely generalizable to a large set of promoters. There is a long-standing appreciation for the importance of the spatial and temporal control of transcription. Here we uncover an important third dimension of control, the magnitude of the response. Our results show that the magnitude of the transcriptional response to the same signaling event, even at the same promoter, can vary greatly depending on the composition of the TFIID complex in the cell. Overall design: Nascent RNA was sequenced from replicate samples of Drosophila S2 cells treated with double-stranded RNA directed against E. coli LacI (Control) or against Drosophlia TAF1 (experimental). Reads per kilo-base per million (RPKM) was determined for each gene and the control and experimental samples were compared to determine the genes that were affected by the depletion of TAF1.

Publication Title

Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE28644
Gene Expression Data Following Chronic Vehicle or Fluoxetine Treatment in Thirty Mouse Inbred Lines
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In order to understand how biochemical and genetic differences correlate with treatment response, we measured depressive-like behavior, gene expression and the levels of thirty-six neurobiochemical analytes across a panel of genetically-diverse mouse inbred lines after chronic treatment with vehicle or fluoxetine. Neurobiochemical markers were chosen based on their putative molecular function within pathways proposed to underlie depression, which include neuronal transmission, HPA-axis regulation, and neuroimmune processes. The goal of this study is to establish genetic and biochemical biomarkers that can predict treatment response and to propose a molecular pathway that is critical in mediating anti-depressant response.

Publication Title

Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP106195
A SRp55-regulated alternative splicing network controls pancreatic beta cell survival and function
  • organism-icon Homo sapiens
  • sample-icon 179 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Progressive failure of insulin-producing beta cells is the central event leading to diabetes, yet the signalling networks controlling beta cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining function and survival of human beta cells. RNA-seq analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion and JNK signalling. Specifically, SRp55-mediated splicing changes modulate the function of the pro-apoptotic proteins BIM and BAX, JNK signalling and endoplasmic reticulum stress, explaining why SRp55 depletion triggers beta cell apoptosis. Furthermore, SRp55 depletion inhibits beta cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human beta cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55 that may crosstalk with candidate genes for diabetes. Overall design: Five independent preparations of EndoC-ßH1 cells exposed to control (siCTL) or SRp55 (siSR#2) siRNAs

Publication Title

SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP123455
Transcriptome analysis of satellite cells with a genetic deletion of HDAC4 to identify the gene modulated by HDAC4
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

NGS technology was used for high-throughput profiling of the transcriptome by comparing satellite cells lacking or not HDAC4. Overall design: Total RNA was isolated from control and HDAC4 KO satellite cells in growth conditions

Publication Title

HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE42090
The innate and adaptive immune response to BCG stimulation in splenocytes taken from C57BL/6 mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.

Publication Title

Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact