refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2207 results
Sort by

Filters

Technology

Platform

accession-icon SRP064621
Development and Plasticity of Alveolar Type 1 Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The alveolar type 1 (AT1) cell covers >95% of the gas exchange surface and is extremely thin to facilitate passive gas diffusion. The development of this highly specialized cell is poorly understood including fundamental questions regarding cell number and morphology. Using new molecular stereology and single cell imaging methods, we show that AT1 cells develop via a non-proliferative two-step process while maintaining proliferative potential. In the flattening step, AT1 cells remodel cell junctions and undergo molecular specification. In the folding step, AT1 cells are sculptured to match secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. AT1 cells grow in size by >10-fold, fueling most of the postnatal lung growth. Strikingly AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results contradict the traditional view of AT1 cells being terminally differentiated and provide insights to alveolar maturation. In this experiment, we conducted next-generation sequencing on flow-sorter AT1 cells isolated from mouse lungs ectopically expressing Sox2 under the control of the AT1-specific promoter Scnn1a versus control AT1 cells. Overall design: Two samples of Sox2-expressing AT1 cells versus two control AT1 samples.

Publication Title

The development and plasticity of alveolar type 1 cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE76471
Expression data analysis from RPMI 8226 cells irraidated to C-ions.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Multiple Myeloma (MM) is an hematological malignancy. MM cells are resistant to X-ray irradiations. We irradiated RPMI 8226 cancer cells with C-ions, which are more energetic than X-ray irradiations. We found that MM cells, RPMI 8226, are also resistant to C-ion irradiations.

Publication Title

HIF-1α and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE76790
Cellular reactions to long-term volatile organic compound (VOC) exposures.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A549 cells were grown at air liquid interphase (ALI) and exposed to airborne formaldehyde for three days. An exposure platform was developed for this purpose, which provided the volatile analyte in a humidified atmosphere. The platform was composed of a reference and an exposure chamber.

Publication Title

Cellular reactions to long-term volatile organic compound (VOC) exposures.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48112
BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

BET bromodomains mediate transcriptional pause release in heart failure.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE48110
BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure [Mouse Heart Expression]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Heart failure (HF) is driven via interplay between master regulatory transcription factors and dynamic alterations in chromatin structure. While pathologic gene transactivation in this context is known to be associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation, the role of epigenetic reader proteins in cardiac biology is unknown. We therefore undertook a first study of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET-family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to activation of canonical master regulators and effectors that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers in cardiac biology and identifies BET co-activator proteins as therapeutic targets in HF.

Publication Title

BET bromodomains mediate transcriptional pause release in heart failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48111
BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure [NRVM Expression]
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Heart failure (HF) is driven via interplay between master regulatory transcription factors and dynamic alterations in chromatin structure. While pathologic gene transactivation in this context is known to be associated with recruitment of histone acetyl-transferases and local chromatin hyperacetylation, the role of epigenetic reader proteins in cardiac biology is unknown. We therefore undertook a first study of acetyl-lysine reader proteins, or bromodomains, in HF. Using a chemical genetic approach, we establish a central role for BET-family bromodomain proteins in gene control during HF pathogenesis. BET inhibition potently suppresses cardiomyocyte hypertrophy in vitro and pathologic cardiac remodeling in vivo. Integrative transcriptional and epigenomic analyses reveal that BET proteins function mechanistically as pause-release factors critical to activation of canonical master regulators and effectors that are central to HF pathogenesis and relevant to the pathobiology of failing human hearts. This study implicates epigenetic readers in cardiac biology and identifies BET co-activator proteins as therapeutic targets in HF.

Publication Title

BET bromodomains mediate transcriptional pause release in heart failure.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE30391
Expression data from human Wharton's jelly stem cells
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human umbilical cord Whartons jelly stem cells (WHJSC) are gaining attention as a possible clinical source of mesenchymal stem cells for use in cell therapy and tissue engineering due to their high accessibility, expansion potential and plasticity. However, the cell viability changes that are associated to sequential cell passage of these cells are not known. In this analysis, we have identified the gene expression changes that are associated to cell passage in WHJSC.

Publication Title

Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59746
Expression data from human Dupuytren's disease cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The objective of this study was to analyze gene expression associated to extracellular matrix components of normal palmar fascia and tissues affected by Dupuytren's disease.

Publication Title

Identification of histological patterns in clinically affected and unaffected palm regions in dupuytren's disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100843
Expression data from nonrandomized trial of vitamin D in Barrett's esophagus
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Vitamin D deficiency has been associated with increased esophageal cancer risk. Vitamin D controls many downstream regulators of cellular processes including proliferation, apoptosis, and differentiation. We evaluated the effects of vitamin D supplementation on global gene expression in patients with Barrett's esophagus.

Publication Title

A nonrandomized trial of vitamin D supplementation for Barrett's esophagus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE113599
R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Upon antigen recognition within peripheral lymphoid organs, B cells interact with T cells and other immune cells to transiently form morphological structures called germinal centers (GCs), which are required for B cells clonal expansion, immunoglobulin class switching, and affinity maturation. This process, known as the GC response, is an energetically demanding process that requires metabolic reprogramming of B cells. Here, we showed that the Ras-related guanosine triphosphate hydrolase (GTPase) R-Ras2 (also known as TC21) plays an essential, nonredundant, and B cellintrinsic role in the GC response. Both the conversion of B cells into GC B cells and their expansion were impaired in mice lacking R-Ras2, but not in those lacking a highly-related R-Ras subfamily member or both the classic H-Ras and N-Ras GTPases. In the absence of R-Ras2, activated B cells did not increase oxidative phosphorylation or aerobic glycolysis. We showed that R-Ras2 was an effector of both the B cell receptor (BCR) and CD40 and that, in its absence, B cells exhibited impaired activation of the PI3K-Akt-mTORC1 pathway, reduced mitochondrial DNA replication, and decreased expression of genes involved in glucose metabolism. Because most human B cell lymphomas originate from GC B cells or B cells that have undergone the GC response, our data suggests that R-Ras2 may also regulate metabolism in B cell malignancies.

Publication Title

R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact