refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 989 results
Sort by

Filters

Technology

Platform

accession-icon GSE46209
Non-telomeric role for Rap1 in regulating metabolism and protecting against obesity
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mammalian telomere-binding protein Rap1 was found to have additional non-telomeric functions, acting as a transcriptional cofactor and a regulator of the NF-kB pathway. Here, we assess the effect of disrupting mouse Rap1 in vivo, and report on its unanticipated role in metabolic regulation and body weight homeostasis. Rap1 inhibition causes dysregulation in hepatic as well as adipose function. In addition, using a separation-of-function allele, we show that the metabolic function of Rap1 is independent of its recruitment to TTAGGG binding elements found at telomeres, and at other interstitial loci.

Publication Title

Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38833
Transcription profiling of human colon Caco-2 cells treated with hydroxytyrosol (HTy) and hydroxytyrosyl ethyl ether (HTy-Et)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells.

Publication Title

Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE58036
Expression data from Arabidopsis thaliana seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Flowering time is a complex trait regulated by many genes that are integrated in different genetic pathways. Different genetic screenings carried out during the past decades have revealed an intrincated genetic regulatory network governing this trait. Efforts aimed at improving our understanding of how such genetic pathways respond to genetic and enviromental cues are needed.

Publication Title

The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE6890
Transcriptome maps of six different human cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The three-dimensional (3D) folding of the chromosomal fibre in the human interphase nucleus is an important, but poorly understood aspect of gene regulation. Especially basic principles of 3D chromatin and chromosome organisation are still elusive. In this paper, we quantitatively analyse the 3D structure of large parts of chromosomes 1 and 11 in the G1 nucleus of human cells and relate it to the human transcriptome map (HTM). Despite a considerable cell-to-cell variation, our results show that subchromosomal domains, which are highly expressed, are more decondensed, have a more irregular shape and are located in the nuclear interior compared to clusters of low expressed genes. These aspects of chromosome structure are shared by six different cell lines and therefore are independent of cell type specific differences in gene expression within the investigated domains. Systematic measurements show that there is little to no intermingling of chromatin from different parts of the same chromosome, indicating that the chromosomal fibre itself is a compact structure. Together, our results reveal several basic aspects of 3D chromosome architecture, which are related to genome function.

Publication Title

The three-dimensional structure of human interphase chromosomes is related to the transcriptome map.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069190
Forward genetic screens in zebrafish identify novel molecular pathways regulating early T cell development
  • organism-icon Danio rerio
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Lymphocytes represent basic components of vertebrate adaptive immune systems, suggesting the utility of non-mammalian models to define the molecular basis of their development and differentiation. Our forward genetic screens in zebrafish for recessive mutations affecting early T cell development revealed several major genetic pathways. The identification of lineage-specific transcription factors and specific components of cytokine signaling and DNA replication/repair pathways known from studies of immuno-compromised mammals provided an evolutionary cross-validation of the screen design. Unexpectedly, however, certain pre-mRNA processing factor genes, including tnpo3, encoding a regulator of alternative splicing, were also found to play a specific role in early T cell development. In both zebrafish and mouse, TNPO3 deficiency impairs intrathymic T cell differentiation, illustrating evolutionarily conserved and cell type-specific functions of certain pre-mRNA processing factor. Overall design: Taking advantage of the apparent evolutionary conservation of lymphocyte-based immunity, we conducted genetic screens in zebrafish aimed at identifying novel regulators of T lymphocyte development. Apart from mutations in genes encoding lymphoid lineage-specific transcription factors, and components of cytokine signaling and DNA replication/repair pathways, mutations in genes encoding pre-mRNA processing factors were also found. To examine the molecular consequences, transcriptome analyses were conducted for three mutants, snapc3, lsm8, tnpo3.

Publication Title

Forward Genetic Screens in Zebrafish Identify Pre-mRNA-Processing Pathways Regulating Early T Cell Development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52046
Expression data from Col-0 and sp1,spx2 under phosphate starvation stress and recovery after resupplying phosphate
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We performed a transcriptomic analysis of Pi-starvation and recovery after resupplying Pi in Arabidopsis thaliana (Columbia-0) wild type plants and double mutant spx1,spx2. Results show that SPX1 is a Pi-dependent inhibitor of the transcription factor PHR1, a central regulatory protein in the control of transcriptional responses to Pi starvation.

Publication Title

SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP063363
Transcriptomes of peripheral blood mononuclear cells from a Guillain-Barre Syndrome patient and her healthy twin sampled at three different points of the disease evolution
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy that debilitates the voluntary and autonomous response of the patient. In this study the transcriptome of peripheral blood mononuclear cells from a GBS patient and her healthy twin were compared to discover possible correlates of disease progression and recovery. Overall design: Blood samples were collected simultaneously from the Guillain-Barré patient (A) and from her control healthy twin (B) at three different time points during disease progression from hospitalization in the intensive care unit (T1), passing to intermediate care (T2), and at conclusion of locomotion rehabilitation program when the patient was close to abandon the hospital (T3).

Publication Title

Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47552
Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To gain further insights into the role of the transcriptome deregulation in the transition from a normal plasma cell (NPC) to a clonal PC and from an indolent clonal PC to a malignant PC, we performed gene expression profiling in 20 patients with MGUS, 33 with high-risk SMM and 41 with MM. The analysis showed that 126 genes were differentially expressed in MGUS, SMM and MM as compared to NPC. Interestingly, 17 and 9 out of the 126 significant differentially expressed genes were small nucleolar RNA molecules (snoRNA) and zinc finger proteins. GADD45A was the most significant up-regulated gene in clonal PC compared to NPC. Several proapoptotic genes (AKT1 and AKT2) were downregulated and antiapoptotic genes (APAF1 and BCL2L1) were upregulated in MM, both symptomatic and asymptomatic, compared to MGUS. Myc mediated apoptosis signaling is one of the top canonical pathways differentiating the asymptomatic and symptomatic myeloma. When we looked for those genes progressively modulated through the evolving stages of monoclonal gammopathies, eight snoRNA showed a progressive increase while APAF1, VCAN and MEGF9 exhibited a progressive downregulation in the transition from MGUS to SMM and to MM. In conclusion, our data show that although MGUS, SMM and MM are not clearly distinguishable groups according to their GEP, several signaling pathways and genes were significant deregulated in the different steps of transformation process.

Publication Title

Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94341
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE94336
Inhibition of the kinesin spindle protein enhances the activity of pomalidomide and dexamethasone in multiple myeloma [In Vivo]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Kinesin spindle protein (KSP) inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (Arry-520), a KSP inhibitor, has demonstrated activity in heavily pretreated multiple myeloma (MM) patients. The aim of this work was to investigate the activity of filanesib in combination with an IMiDs plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. Results: Filanesib showed in vitro and in vivo synergy with all IMiDs plus dexamethasone treatment, particularly with the pomalidomide combination (PDF). Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and it was shown to be mediated by impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, PDF increased the activation of the proapoptotic protein Bax, which has been previously associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Conclusions: Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone and es-tablished the basis for a recently activated trial being conducted by the Spanish MM group investigating this combination in relapsed MM patients.

Publication Title

The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact