refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE38680
GAA deficiency (Pompe Disease) in infantile-onset patients
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease.

Publication Title

Transcriptional response to GAA deficiency (Pompe disease) in infantile-onset patients.

Sample Metadata Fields

Sex, Specimen part, Disease, Treatment, Subject

View Samples
accession-icon GSE67918
Non-alcoholic steatohepatitis causes selective CD4+ T cell loss and promotes hepatocarcinogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hepatocellular carcinoma (HCC) is the second most common cause of cancer related death. NAFLD affects a large proportion of the US population. Its incidence and prevalence are increasing to epidemic proportions around the world and is known to increase the risk of HCC. We studied how intrahepatic lipids affect adaptive immunity and HCC development in different murine models of NASH and HCC. Linoleic acid, a fatty acid found in NAFLD caused a selective loss of hepatic CD4+ but not CD8+ T cells leading to accelerated hepatocarcinogenesis. CD4+ T cells were more dependent on oxidative phosphorylation for energy source than CD8+ T cells, and disruption of oxidative phosphorylation by linoleic acid caused more severe damage in CD4+ T cells leading to selective loss of these cells. In vivo blockade of ROS using n-acetylcysteine reversed the NASH-induced hepatic CD4+ T cell decrease and delayed NASH-promoted HCC. Our results provide a new link between lipid metabolism and impaired anti-tumor surveillance.

Publication Title

NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66933
STIM1 controls T cell mediated immune regulation and inflammation in chronic infection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Influence of STIM1 on the transcriptome of CD4+ T cell subsets

Publication Title

STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE141873
Establishment and Characterisation by Expression Microarray of Patient Derived Xenograft Panel of Human Pancreatic Adenocarcinoma Patients
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

mRNA expression profiling of pancreatic cancer, comparing adjacent normal tissue, patient tumour and first generation patient derived xenograft tumours

Publication Title

Establishment and Characterisation by Expression Microarray of Patient-Derived Xenograft Panel of Human Pancreatic Adenocarcinoma Patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13121
SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE13120
Age-related gene expression changes in mouse neocortex
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aging is associated with major nuclear changes affecting genomic integrity and gene expression. Here we compare the gene expression profiles in the neocortex of young (5 months old) and old (30 months old) B6xC3 F1 mice.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact