refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 166 results
Sort by

Filters

Technology

Platform

accession-icon GSE44532
Derivation of Neural Stem Cells from human adult peripheral CD34+ Cells for an Autologous Model of Neuroinflammation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox-2, Oct3/4, C-MyC and Klf-4. The derived NSC could be differentiated to astroglia and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine.

Publication Title

Derivation of neural stem cells from human adult peripheral CD34+ cells for an autologous model of neuroinflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26736
Mulcom: a multiple comparison statistical test for microarray data in Bioconductor
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mulcom: a multiple comparison statistical test for microarray data in Bioconductor.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE7820
Transcript and Proteomic Analyses of Wild-Type and GPA2 Mutant Saccharomyces cerevisiae Strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

In response to limited nitrogen and abundant carbon sources, diploid Saccharomyces cerevisiae strains undergo a filamentous transition in cell growth as part of pseudohyphal differentiation. Use of the disaccharide maltose as the principal carbon source, in contrast to the preferred nutrient monosaccharide glucose, has been shown to induce a hyper-filamentous growth phenotype in a strain deficient for GPA2 which codes for a Galpha protein component that interacts with the glucose-sensing receptor Gpr1p to regulate filamentous growth. In this report, we compare the global transcript and proteomic profiles of wild-type and Gpa2p deficient diploid yeast strains grown on both rich and nitrogen starved maltose media. We find that deletion of GPA2 results in significantly different transcript and protein profiles when switching from rich to nitrogen starvation media. The results are discussed with a focus on the genes associated with carbon utilization, or regulation thereof, and a model for the contribution of carbon sensing/metabolism-based signal transduction to pseudohyphal differentiation is proposed.

Publication Title

Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26732
Mulcom: a multiple comparison statistical test for microarray data in Bioconductor (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Mulcom: a multiple comparison statistical test for microarray data in Bioconductor.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE36868
Simvastatin treated Lymphoblastoid Cell lines from Cholesterol and Pharmacogenomics (CAP) Trial
  • organism-icon Homo sapiens
  • sample-icon 960 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Statins reduce cardiovascular disease risk by lowering plasma low density lipoprotein (LDL)-cholesterol. To identify novel pathways that modulate statin response, we assessed the influence of simvastatin exposure on expression quantitative trait locus (eQTL) associations across the genome in 480 lymphoblastoid cell lines (LCLs). Cell lines were derived blood samples collected ant entry visit from participants in the Cholesterol and Pharmacogenomics (CAP) trial, who underwent a 6 week 40mg/day simvastatin trial. We identified 4590 cis-eQTLS that were independent of treatment status (FDR=1%) and six cis-eQTLS for which there was evidence of an interaction with treatment (FDR=20%). Genotypes and Phenotypes derived from these indivudals are available through dbGaP (Accession Number). eQTL results are available at: http://eqtl.uchicago.edu/cgi=bin/gbrowse/eqtl/

Publication Title

HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE27175
Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

INTRODUCTION. Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4C until fixation and then fixed at 4C, for 24 hours, in formalin followed by 4 hours in ethanol 95%.

Publication Title

Formalin fixation at low temperature better preserves nucleic acid integrity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23938
Comprehensive genomic profiling identified miRNA signatures associated with mammary tumor differentiation and development
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We performed affymetrix gene expression profiling on mammary tumors from eight well-characterized genetically engineered Mouse (GEM) models of human breast cancer.

Publication Title

Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8711
Knock-in of Kras G12D in mouse MLP-29 cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconSentrix MouseRef-8 Expression BeadChip (Target ID)

Description

KRAS mutations are present at a high frequency in human cancers. The development of therapies targeting mutated KRAS requires cellular and animal preclinical models. We exploited adeno-associated virus-mediated homologous recombination to insert the KRAS G12D allele in the genome of mouse somatic cells. Heterozygous mutant cells displayed a constitutively active Kras protein, marked morphologic changes, increased proliferation and motility but were not transformed. On the contrary, mouse cells in which we overexpressed the corresponding KRAS cDNA were readily transformed. The levels of Kras activation in knock-in cells were comparable with those present in human cancer cells carrying the corresponding mutation. KRAS-mutated cells were compared with their wild-type counterparts by gene expression profiling, leading to the definition of a "mutated KRAS-KI signature" of 345 genes. This signature was capable of classifying mouse and human cancers according to their KRAS mutational status, with an accuracy similar or better than published Ras signatures. The isogenic cells that we have developed recapitulate the oncogenic activation of Kras occurring in cancer and represent new models for studying Kras-mediated transformation. Our results have implications for the identification of human tumors in which the oncogenic KRAS transcriptional response is activated and suggest new strategies to build mouse models of tumor progression.

Publication Title

Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP013912
Intracellular and extracellular microRNAs expressed by HEK293T cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146 overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs. The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Overall design: Cells were transfected with a plasmid to direct overexpression of miR-146a. Extracellular vesicles were isolated by ultracentrifugation from untreated and transfected cells. RNA was isolated from one sample each of untreated and transfected cells and vesicles.Small RNA libraries were prepared for sequencing.

Publication Title

Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33803
Environmental and simulation facility conditions can modulate gravity response of Drosophila transcriptome
  • organism-icon Drosophila melanogaster
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.

Sample Metadata Fields

Sex, Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact