refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1081 results
Sort by

Filters

Technology

Platform

accession-icon GSE35978
Expression data from the human cerebellum and parietal cortex brain
  • organism-icon Homo sapiens
  • sample-icon 233 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Two gene co-expression modules differentiate psychotics and controls.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE35977
Expression data from the human parietal cortex brain
  • organism-icon Homo sapiens
  • sample-icon 123 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders. Associated genetic and gene expression

Publication Title

Two gene co-expression modules differentiate psychotics and controls.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE35974
Expression data from the human cerebellum brain
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders. Associated genetic and gene expression

Publication Title

Two gene co-expression modules differentiate psychotics and controls.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP043684
Hyper-excitability of Neurons generated from Patients with Bipolar Disorder
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Bipolar Disorder (BD) is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression and, without treatment, 15% of patients commit suicide1. Hence, among all diseases, BD has been ranked by the WHO as a top disorder of morbidity and lost productivity2. Previous neuropathological studies have revealed a series of alterations in the brains of BD patients or animal models3, such as reduced glial cell number in the patient prefrontal cortex4, up-regulated activities of the PKA/PKC pathways5-7, and changes in dopamine/5-HT/glutamate neurotransmission systems8-11. However, the roles and causation of these changes in BD are too complex to exactly determine the pathology of the disease; none of the current BD animal models can recapitulate both the manic and depressive phenotypes or spontaneous cycling of BD simultaneously12,13. Furthermore, while some patients show remarkable improvement with lithium treatment, for yet unknown reasons, other patients are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model has been a challenge for research into BD. The development of induced pluripotent stem cell (iPSC) technology has provided such a new approach. Here, we developed a human BD iPSC model and investigated the cellular phenotypes of hippocampal dentate gyrus neurons derived from the patient iPSCs. Using patch clamp recording, somatic Ca2+ imaging and RNA-seq techniques, we found that the neurons derived from BD patients exhibited hyperactive action potential (AP) firing, up-regulated expression of PKA/PKC/AP and mitochondria-related genes. Moreover, lithium selectively reversed these alterations in the neurons of patients who responded to lithium treatment. Therefore, hyper-excitability is one endophenotype of BD that is probably achieved through enhancement in the PKA/PKC and Na+ channel signaling systems, and our BD iPSC model can be used to develop new therapies and drugs aimed at clinical treatment of this disease. Overall design: total RNAseq from neurons generated from BD patient-specific iPS cells

Publication Title

Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE73464
Diagnosis of Kawasaki Disease in children using host RNA expression
  • organism-icon Homo sapiens
  • sample-icon 839 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73461
Diagnosis of Kawasaki Disease in children using host RNA expression [Discovery_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 459 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73463
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V4_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 233 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73462
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V3_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP090108
RNA Sequencing Quantitative Analysis of RNA editing sites of Wild Type and ADAR1 editing deficient (ADAR1E861A) murine fetal RNA of various tissues
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Adar1 deaminase inactive mutant mouse tissue samples were obtain from the Walkley lab as described in http://www.ncbi.nlm.nih.gov/pubmed/26275108. We performed mmPCR-seq on the samples and measured the editing levels of. Overall design: Fetal mRNA profiles of E12.5 wild type (WT) and ADAR E861A mutant mice were generated by deep sequencing using Illumina HiSeq 2000.

Publication Title

Dynamic landscape and regulation of RNA editing in mammals.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15907
Immunological Genome Project data Phase 1
  • organism-icon Mus musculus
  • sample-icon 638 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen). Primary cells from multiple immune lineages are isolated ex-vivo, primarily from young adult B6 male mice, and double-sorted to >99% purity. RNA is extracted from cells in a centralized manner, amplified and hybridized to Affymetrix 1.0 ST MuGene arrays. Protocols are rigorously standardized for all sorting and RNA preparation. Data is released monthly in batches of cell populations.

Publication Title

Transcriptomes of the B and T lineages compared by multiplatform microarray profiling.

Sample Metadata Fields

Sex, Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact