refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 425 results
Sort by

Filters

Technology

Platform

accession-icon GSE35360
The complex interplay of genetic pathways in C.elegans following the treatment with humic substances
  • organism-icon Caenorhabditis elegans
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Low concentrations of the dissolved leonardite humic acid HuminFeed (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. Furthermore growth was impaired and reproduction delayed, effects which have also been identified in other polyphenolic monomers, including tannic acid, rosmarinic acid, and caffeic acid. Moreover, a chemical modification of HF (HF-HQ), which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d) and old adult (11 d) nematodes exposed to two concentrations of HF and young adults (3 d) exposed to two concentrations of HF-HQ.

Publication Title

The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35354
Meta-analysis of global transcriptomics of Quercetin and Tannic acid exposed C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Recent research has highlighted that the polyphenols Quercetin (Q) and Tannic acid (TA) are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension), lifespan extending or toxic.

Publication Title

Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE5144
hTERT effects in CD8 T Lymphocytes from two healthy donors
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Human Genome U133A Array (hgu133a)

Description

Expression in GFP vs. GFP/hTERT transduced CD8 T Lymphocytes from Healty Donors (HD) 1 and 2 at early and late passages. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone.

Publication Title

Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5142
hTERT effects in CD8 T Lymphocytes HD1
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Using CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD2 was profiled on U133Plus 2.0 and submitted as a separate GEO series.

Publication Title

Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5143
hTERT effects in CD8 T Lymphocytes HD2
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using CD8+ T lymphocyte clones over-expressing telomerase weinvestigated the molecular mechanisms that regulate T cell proliferation. Transduction and subcloning procedures were performed on CD8 + naive T-cell clones isolated from two different healthy individuals aged between 30 to 35 years (HD1 and HD2). T-cell cloneswere transduced to express hTERT/GFP or GFP alone. HD1 was profiled on U133A and submitted as a separate GEO series.

Publication Title

Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13744
Estimating accuracy of absolute gene expression measurement by RNA-Seq and microarrays with proteomics
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Microarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown.

Publication Title

Estimating accuracy of RNA-Seq and microarrays with proteomics.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP069773
RNA-seq of human fibroblasts after irradiation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Comparing gene expression level by Illumina sequencing of fibroblasts after irradiation Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples, 3 samples per group, 2 groups: 1) MRC-5 cells population doublings (PD) 16 and irradiation (20GY) and 2) HFF cells PD32 and irradiation (20GY)

Publication Title

Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18069
Gene and miRNA expression data from primate postnatal brain in prefrontal cortex: time course
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17757
Gene expression data from primate postnatal brain in prefrontal cortex: time course
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains (superior frontal gyrus) of humans and rhesus macaques over the entire species lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood.

Publication Title

MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP055573
RNA-seq of zebrafish brain, liver and skin during perturbation with rotenone at young and old age
  • organism-icon Danio rerio
  • sample-icon 68 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Zebrafish of two different age groups (12 and 36 months) were treated with low amounts of rotenone (mild stress) and compared to untreated zebrafish. Two different durations were used (3 and 8 weeks). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 68 sample: 3 tissues (brain, liver, skin); 2 age groups (12 and 36 months); controls and rotenone treated samples; 2-6 biological replicates for each group

Publication Title

Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact