refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 362 results
Sort by

Filters

Technology

Platform

accession-icon GSE87331
Distinct gene expression patterns of highly and poorly malignant melanocytic tumors from genetically engineered mouse models of mice carrying specific inactivating mutations in Ink4A or ARF respectively
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Cutaneous malignant melanoma is among the most deadly human cancers, broadly resistant to most clinical therapies. A majority of patients with BRAFV600E melanomas respond well to inhibitors such as vemurafenib, but all ultimately relapse. Moreover, there are no viable treatment options available for other non-BRAF melanoma subtypes in the clinic. A key to improving treatment options lies in a better understanding of mechanisms underlying melanoma progression, which are complex and heterogeneous. In this study we perform gene expression profilling of highly and poorly malignant melanocytic tumors from genetically engineered mouse models to discover important drivers of cancer progression.

Publication Title

Integrated Genomics Identifies miR-32/MCL-1 Pathway as a Critical Driver of Melanomagenesis: Implications for miR-Replacement and Combination Therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64789
Distinct gene expression patterns of multipotent' versus unipotent' single colony-derived strains (SCDSs) of human bone marrow stromal cells (BMSCs)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dyskeratosis congenita (DC) is an inherited multi-system disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the bone marrow stromal cell population (BMSCs, also known as bone marrow-derived mesenchymal stem cells), may contribute to the hematological phenotype.

Publication Title

Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE58383
Breast cancer tumor promoting cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

In this study we obtained gene expression profiles of MCFS and parental MCF7 cell lines using Illumina microarrays

Publication Title

In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE54150
Pregnancy-associated alterations in DNA methylation patterns of mammary epithelial stem cells
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE54147
Pregnancy-associated alterations in DNA methylation patterns of mammary epithelial stem cells [reproductive stages]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mammary gland development and luminal differentiation occur largely postnatally during puberty and pregnancy. We found that pregnancy had the most significant effects on stem cells, inducing a distinct epigenetic state that remained stable through life.

Publication Title

Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE54148
Pregnancy-associated alterations in DNA methylation patterns of mammary epithelial stem cells [inhibitor study]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mammary gland development and luminal differentiation occur largely postnatally during puberty and pregnancy. To explore the role of DNA methylation in luminal cell differentiation and pregnancy-induced changes, we determined the genome-wide DNA methylation and gene expression profiles of mammary epithelial stem, luminal progenitor, and mature luminal cells at different reproductive stages. We found that pregnancy had the most significant effects on stem cells, inducing a distinct epigenetic state that remained stable through life. Integrated analysis of gene expression, DNA methylation, and histone modification profiles revealed cell type and reproductive stage-specific changes in molecular signatures. We also identified p27 and TGF signaling as key regulators of luminal progenitor cell proliferation based on their expression patterns and by the use of explant cultures. Our results suggest relatively minor changes in DNA methylation during luminal cell differentiation as compared to the significant effects of pregnancy on mammary epithelial stem cells.

Publication Title

Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE58671
Enhanced MET signaling in mouse epidermis activates EGFR and initiates squamous carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MET expression is elevated in a majority of human skin cancers but its contributions to pathogenesis have not been evaluated. In a mouse model of constitutive overexpression of HGF (MT-HGF), the incidence of squamous cell skin tumors induced by initiation with 7,12-dimethylbenz(a)anthracene (DMBA) followed by exposure to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is increased fivefold over control groups. Half of these tumors carry Hras1 or Kras mutations. Without DMBA initiation, tumors also erupt on MT-HGF mouse skin but only when TPA promotion is enhanced by crossing these mice with mice overexpressing cutaneous PKC. None of these tumors have Ras mutations. In culture, MT-HGF keratinocytes share identical MET mediated phenotypic and biochemical features with wildtype keratinocytes transformed by oncogenic RAS. In both cell types, these common features of initiated keratinocytes arise from autocrine activation of EGFR through elevated expression and release of EGFR ligands. Inhibition of EGFR ablates the initiated signature of MT-HGF keratinocytes in vitro and causes regression of MT-HGF induced tumors in vivo. Global gene expression data indicate that MT-HGF and RAS transformed keratinocytes share largely an identical profile of over 5000 mRNAs. Gene ontology analysis reveals the most affected concordant signature is enriched for functions relevant to tissue development and response to wounding, accompanied by cytokine and growth factor activity, and peptidase and endopeptidase activity previously not linked to initiated keratinocytes. Furthermore, gene co-expression analysis in skin cancer patients revealed a core RAS/MET co-expression network considerably activated in pre cancerous and cancerous lesions. Thus MET activation though EGFR contributes to human cutaneous cancers, and inhibitors could be efficacious in advanced lesions such as those seen in transplant recipient patients.

Publication Title

MET signaling in keratinocytes activates EGFR and initiates squamous carcinogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP095117
Neural precursor cell-secreted TGF-ß2 subverts the inflammatory program of invading monocyte-derived dendritic cells during CNS autoimmunity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In Multiple Sclerosis, the pathological interaction of autoreactive helper T (TH) cells with mononuclear phagocytes in the central nervous system (CNS) drives initiation and maintenance of chronic neuroinflammation. Herein, we found that intrathecal transplantation of neural stem cells (NPCs) in mice with experimental autoimmune encephalomyelitis (EAE) impairs the accumulation of inflammatory monocyte-derived dendritic cells (moDCs) in the CNS leading to improved clinical outcome. NPCs treatment reduced in the CNS IL-23, IL-1 and TNF-a, cytokines required for terminal differentiation of TH cells and accordingly GM-CSF-producing pathogenic TH cells. In vivo and in vitro transcriptome analyses disclosed that NPC secreted factors induce an inhibition of DC differentiation and maturation, favoring a fate switch towards an anti-inflammatory phenotype. We identified TGF-ß2 as the crucial mediator of NPC immunomodulation: TGFß2 knockout NPCs transplanted in EAE are ineffective in impairing moDC accumulation within the CNS and fail to drive clinical improvement. This study provides evidence that intrathecally injected NPCs interfere with CNS-compartmentalized inflammation of the effector phase of EAE, reprogramming, through the secretion of TGF-ß2, inflammatory monocyte-derived DCs towards anti-inflammatory myeloid cells. Overall design: mRNA profiles of monocyte derived-dendritic cells (moDCs) isolated by FACS sorting at 7 days post-treatment from the CNS (hindbrain and spinal cord) of quadruplicate pool of 4–7 MOG35-55-immunized C57Bl/6 mice either intrathecally injected with PBS or 1 million neural precursor cells (NPCs) at the peak of the disease (2-4 days after clinical onset).

Publication Title

Neural precursor cell-secreted TGF-β2 redirects inflammatory monocyte-derived cells in CNS autoimmunity.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Subject

View Samples
accession-icon GSE64023
Knockdown of TERC with siRNA in normal bone marrow stromal cells (BMSCs) recapitulates the defective BMSC phenotype in patients with telomere biology disorders
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dyskeratosis congenita (DC) is an inherited multi-system disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the bone marrow stromal cell population (BMSCs, also known as bone marrow-derived mesenchymal stem cells), may contribute to the hematological phenotype.

Publication Title

Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE22772
Expression data from U373 cells expressing EGFP, MAML1-dn and DTX1-myc
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Glioblastoma multiforme (GBM) is the most malignant and most common tumor of the central nervous system characterized by rapid growth and extensive tissue infiltration. GBM results in more years of life lost than any other cancer type. Notch signaling has been implicated in GBM pathogenesis through several modes of action. Inhibition of Notch leads to a reduction of cancer-initiating cells in gliomas and reduces proliferation and migration. Deltex1 (DTX1) is part of an alternative Notch signaling pathway distinct from the canonical MAML1/RBPJ-mediated cascade. In this study, we show that DTX1 activates both the RTK/PI3K/PKB as well as the MAPK/ERK pathway. Moreover, we found the anti-apoptotic factor Mcl-1 to be induced by DTX1. In accordance with this, the clonogenic potential and proliferation rates of glioma cell lines correlated with DTX1 levels. DTX1 knock down mitigated the tumorigenic potential in vivo, and overexpression of DTX1 increased cell migration and invasion of tumor cells accompanied by an elevation of the pro-migratory factors PKB and Snail1. Microarray gene expression analysis identified a DTX1-specific transcriptional program - including microRNA-21 - which is distinct from the canonical Notch signaling. We propose the alternative Notch pathway via DTX1 as oncogenic factor in malignant glioma and found low DTX1 expression levels to correlate with prolonged survival of GBM and early breast cancer patients in open source databases.

Publication Title

Deltex-1 activates mitotic signaling and proliferation and increases the clonogenic and invasive potential of U373 and LN18 glioblastoma cells and correlates with patient survival.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact