refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 362 results
Sort by

Filters

Technology

Platform

accession-icon SRP166289
Recruiting Endogenous ADARs with Antisense Oligonucleotides to Reprogram the Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Huge efforts are made to engineer safe and efficient genome editing tools. An alternative might be the harnessing of ADAR-mediated RNA editing. We now present the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we refer to as RESTORE. Notably, RESTORE was markedly precise, and there was no evidence for perturbation of the natural editing homeostasis. We applied RESTORE to a panel of standard human cell lines, but also to several human primary cells including hepatocytes. In contrast to other RNA and DNA editing strategies, this approach requires only the administration of an oligonucleotide, circumvents the ectopic expression of proteins, and thus represents an attractive platform for drug development. In this respect we have shown the repair of the PiZZ mutation causing a1-antitrypsin deficiency and the editing of phosphotyrosine 701 in STAT1. Overall design: Identification of off-target editing events and Interferon-a influence in HeLa cell line transfected with an ASO for RNA editing by RNA-Seq, 2 samples (ASO +/- IFN) , 2 control sample (+/-IFN), 2 biologically independent experiments for each sample, 8 samples in total

Publication Title

Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE54967
Expression data from U87MG subclones
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

U87MG is a glioblastoma cell line that shows substantial heterogeneity despite long-term passaging.

Publication Title

Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87331
Distinct gene expression patterns of highly and poorly malignant melanocytic tumors from genetically engineered mouse models of mice carrying specific inactivating mutations in Ink4A or ARF respectively
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Cutaneous malignant melanoma is among the most deadly human cancers, broadly resistant to most clinical therapies. A majority of patients with BRAFV600E melanomas respond well to inhibitors such as vemurafenib, but all ultimately relapse. Moreover, there are no viable treatment options available for other non-BRAF melanoma subtypes in the clinic. A key to improving treatment options lies in a better understanding of mechanisms underlying melanoma progression, which are complex and heterogeneous. In this study we perform gene expression profilling of highly and poorly malignant melanocytic tumors from genetically engineered mouse models to discover important drivers of cancer progression.

Publication Title

Integrated Genomics Identifies miR-32/MCL-1 Pathway as a Critical Driver of Melanomagenesis: Implications for miR-Replacement and Combination Therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12128
Expression data from ectodermal explants following activation of hormone-inducible zic1
  • organism-icon Xenopus laevis
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

The response of ectodermal explants, neuralized by noggin and treated with cycloheximide, following activation of hormone-inducible zic1 injected into the parent embryos compared to those from beta globin injected embryos as controls, is expected to provide information on the direct targets of the Zic1 transcription factor.

Publication Title

A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9280
The effect of dietary calcium and dairy proteins on adipose tissue gene expression profile in diet induced obesity
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The effect of dietary calcium and dairy proteins on adipose tissue gene expression profile in diet induced obesity

Publication Title

Effect of dietary calcium and dairy proteins on the adipose tissue gene expression profile in diet-induced obesity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67665
Transcriptome profiling times series of zebrafish heart regeneration
  • organism-icon Danio rerio
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Zebrafish Gene 1.0 ST Array (zebgene10st)

Description

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.

Publication Title

Analysis of the dynamic co-expression network of heart regeneration in the zebrafish.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE143007
A pan-cancer transcriptome analysis to identify the molecular mechanism of prexasertib resistance [microarray]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

The combined influence of oncogenic drivers, genomic instability, and/or DNA damage repair deficiencies increases replication stress in cancer. Cells with high replication stress rely on the upregulation of checkpoints like those governed by CHK1 for survival. Previous studies of the CHK1 inhibitor prexasertib demonstrated activity across multiple cancer types. Therefore, we sought to (1) identify markers of prexasertib sensitivity and (2) define the molecular mechanism(s) of intrinsic and acquired resistance using preclinical models representing multiple tumor types. Our findings indicate that while cyclin E dysregulation is a driving mechanism of prexasertib response, biomarkers associated with this aberration lack sufficient predictive power to render them clinically actionable for patient selection. Transcriptome analysis of a pan-cancer cell line panel and in vivo models revealed an association between expression of E2F target genes and prexasertib sensitivity and identified innate immunity genes associated with prexasertib resistance. Functional RNAi studies supported a causal role of replication fork components as modulators of prexasertib response. Mechanisms which protect cells from oncogene-induced replication stress may safeguard tumors from such stress induced by a CHK1 inhibitor, resulting in acquired drug resistance. Furthermore, resistance to prexasertib may be shaped by innate immunity.

Publication Title

A pan-cancer transcriptome analysis identifies replication fork and innate immunity genes as modifiers of response to the CHK1 inhibitor prexasertib.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE64789
Distinct gene expression patterns of multipotent' versus unipotent' single colony-derived strains (SCDSs) of human bone marrow stromal cells (BMSCs)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Dyskeratosis congenita (DC) is an inherited multi-system disorder, characterized by oral leukoplakia, nail dystrophy, and abnormal skin pigmentation, as well as high rates of bone marrow failure, solid tumors, and other medical problems such as osteopenia. DC and telomere biology disorders (collectively referred to as TBD here) are caused by germline mutations in telomere biology genes leading to very short telomeres and limited proliferative potential of hematopoietic stem cells. We found that skeletal stem cells (SSCs) within the bone marrow stromal cell population (BMSCs, also known as bone marrow-derived mesenchymal stem cells), may contribute to the hematological phenotype.

Publication Title

Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE58383
Breast cancer tumor promoting cell transcriptome
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

In this study we obtained gene expression profiles of MCFS and parental MCF7 cell lines using Illumina microarrays

Publication Title

In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17760
Expression data from Ts1Cje and disomic C57BL/6 adult neurospheres
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Down syndrome is the most common form of genetic mental retardation. How Trisomy 21 causes mental retardation remains unclear and its effects on adult neurogenesis have not been addressed. To gain insight into the mechanisms causing mental retardation we used microarrays to investigate gene expression differences between Ts1Cje (a mouse model of Down syndrome) and C57BL/6 littermate control neurospheres. The neurospheres were generated from neural stem cells and progenitors isolated from the lateral walls of the lateral ventricles from adult mice.

Publication Title

Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of Down syndrome.

Sample Metadata Fields

Sex, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact