refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 289 results
Sort by

Filters

Technology

Platform

accession-icon GSE7139
Comparative GeneChip expression profiling of four brain regions
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Study on selective vulnerability of certain brain regions to oxidative stress. Here we selected 4 brain regions (hippocampal CA1 and CA3, cerebral cortex, and cerebellar granular layer) to study this phenomenon.

Publication Title

Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25119
Comparison of CD4+ T cells from human fetal and adult donors
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25087
Human Fetal and Adult Peripheral Nave CD4+ T cells and CD4+CD25+ Treg cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared differences in fetal and adult T cells by performing whole genome profiling on sort-purified T cells (nave CD4+ and Treg cells) from human fetal specimens (18-22 gestational weeks) and adult specimens (age 25-40 years old). Fetal and Adult Nave CD4+ T cells phenotype: CD3+CD4+CD45RA+CCR7+CD27+, Fetal and Adult CD4+CD25+ Treg phenotype: CD3+CD4+CD25bright

Publication Title

Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25085
Comparison of gene expression profiles by CD3+CD4+ thymocytes derived from fetal and adult hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human fetal and adult hematopoietic stem cells (HSC) were obtained from fetal liver, fetal bone marrow (BM), and adult BM. These were injected into human fetal thymic implants in SCID-hu Thy/Liv mice (4-6 separate mice per HSC donor) and allowed to mature into single positive CD4+ (SP4) thymocytes over the course of 7-8 weeks. SP4 thymocytes from injected stem cells were subsequently sort-purified from thymic implants and gene expression was performed.

Publication Title

Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP076944
RNA-seq transcriptome analysis of epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- T cells from healthy human skin
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the transcriptome analysis of epidermal CD8 tissue resident memory T (TRM) cells from healthy human skin. Specifically, epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- TRM cells from healthy human skin were sorted by FACS. Differential gene expression analysis revealed functional dichotomy of epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- TRM cells. Overall design: Analysis of differentially expressed genes between epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- T cells from healthy human skin, biological replicates (n=7) (healthy skin donors).

Publication Title

CD49a Expression Defines Tissue-Resident CD8<sup>+</sup> T Cells Poised for Cytotoxic Function in Human Skin.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6693
Time-dependent response of hippocampal CA1 and CA3 to oxidative stress
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Mechanistic study on the differential responses of the two hippocampal adjoining regions, i.e., CA1 and CA3, to elevated oxidative stress.

Publication Title

Genome-wide transcriptome profiling of region-specific vulnerability to oxidative stress in the hippocampus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48911
GeneChip expression profiling of Glud1 (glutamate dehydrogenase 1) transgenic mice across age
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Glud1 (Glutamate dehydrogenase 1) transgenic mice release more excitatory neurotransmitter glutamate to synaptic cleft throughout lifespan.

Publication Title

Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26966
Identification of Growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a Novel Tumor Suppressor in Pituitary Gonadotrope Tumors
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gonadotrope or null cell pituitary tumors present clinically with signs of hypogonadism and hypopituitarism, together with visual disturbances due to mass effects. Since there are no medical therapies, surgery and/or radiation are the only therapeutic options. To identify dysregulated genes and/or pathways that may play a role in tumorigenesis and/ or progression, molecular profiling was performed on 14 gonadotrope tumors and 9 normal human pituitaries from autopsy samples. Principle component analysis (PCA) revealed clear discrimination between tumor and normal pituitary gene expression profiles. Bioinformatic analysis identified specific genes and pathways that were highly differentially regulated, including a cohort of putative downstream effectors of p53 were repressed in gonadotrope pituitary tumors, including GADD45, GADD45 and Reprimo with concomitant downregulation of the upstream regulator, PLAGL1. PLAGL1 reexpression in gonadotrope cells did not directly modulate the downstream targets. Further functional analysis of GADD45 was performed. Overexpression of GADD45 in mouse gonadotrope cells blocked proliferation, increased rates of apoptosis in response to growth factor withdrawal and increased colony formation in soft agar. In contrast to prior studies with GADD45, methylation interference assays showed no evidence of epigenetic modification of the GADD45 promoter in pituitary tumors. Thus, our data suggest that many components downstream of p53 are suppressed in gonadotrope pituitary tumors. A novel candidate, GADD45 is low in tumors and reexpression blocks proliferation, survival and tumorigenesis in gonadotrope cells. Unlike GADD45, GADD45 is not methylated to block its expression. Together these studies identify new targets and mechanisms to explore concerning pituitary tumor initiation and progression.

Publication Title

Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE3854
An integrated strategy for analyzing the unique developmental program of different myoblast subtypes
  • organism-icon Drosophila melanogaster
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

An important but largely unmet challenge in understanding the mechanisms that govern formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from twelve genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasetsbased on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genesprovisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.

Publication Title

An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050374
RNA-seq data from six cell types for cell type phylogenetics
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII, IlluminaHiSeq2000

Description

We sequenced mRNA from a total of 12 samples (6 different cell types, each with two biological replicates) to infer the relationship among those cell types Overall design: Examination of mRNA levels in six different human cell types grown in culture with two biological replicates for each cell type

Publication Title

Cell-type phylogenetics and the origin of endometrial stromal cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact