refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 62 results
Sort by

Filters

Technology

Platform

accession-icon GSE60901
Comparison of small RNA-seq and microarray analysis for determining the effects of acute prenatal ethanol exposure on microRNA expression and its amelioration by environmental manipulation
  • organism-icon Rattus norvegicus
  • sample-icon 94 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE60819
Effects of acute prenatal exposure to ethanol on microRNA expression are ameliorated by environmental manipulation.
  • organism-icon Rattus norvegicus
  • sample-icon 94 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

In this study, we tested if miRNAs are altered in amygdala and ventral striatum as a consequence of prenatal ethanol exposure and/or social enrichment. miRNA samples from 72 male and female adolescent rats were analyzed by RNA-Seq analysis and Affymetrix miRNA arrays. Several miRNAs showed significant changes due to prenatal ethanol exposure or social enrichment in one or both brain regions. Some of the miRNA changes caused by ethanol were reversed by social enrichment. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. We also directly examined the evidence for modulation of target mRNAs in whole transcriptome microarray data from the same rats. Among the pathways most strongly affected were p53, CREB, Glutamate and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure.

Publication Title

Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP150011
Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

To compare the RNAs present in dendrites and somas of individual neurons, we manually separated the dendrites and soma of primary mouse hippocampal neurons using a micropipette and performed RNA-sequencing on each subcellular fraction such that we obtained the subcellular transcriptomes of the same cell. Overall design: 16 individual neurons were collected and dissected (yielding a total of 32 soma and dendrite samples) from multiple cultures across multiple days. ERCC spike-in control RNA was added to each sample.

Publication Title

Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE19436
Transcriptional alterations in cycling neural stem cells underlying alcohol use disorders
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ethanol inhibits the proliferation of neural stem cells in the fetal, adolescent, and adult brain. The consequences are cognitive deficits associated with fetal alcohol spectrum disorder and alcohol use disorder. We tested the hypothesis that ethanol affects progression through cell cycle checkpoints by differentially modifying transcriptional processes. Monolayer cultures of NS-5 neural stem cells were treated for 48 hr with the mitogenic agent FGF2 or the anti-mitogenic TGF1 in the absence or presence of ethanol. Cell cycle elongation was induced by a global down-regulation of genes involved in cell cycle progression, including the cyclin E system. Checkpoint regulation occurred downstream of p21 and Jun-oncogene signaling cascades. Thus, ethanol can affect cell cycle progression by altering transcript expression of strategic genes downstream of the G1/S checkpoint.

Publication Title

Ethanol-induced methylation of cell cycle genes in neural stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20295
Transcriptional analysis of multiple brain regions in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20291
Transcriptional analysis of putamen in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20168
Transcriptional analysis of prefrontal area 9 in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE20292
Transcriptional analysis of whole substantia nigra in Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Post mortem tissue was dissected from two groups of age and gender matched groups of Parkinson and Control subjects

Publication Title

Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE3303
Gene Expression Profiles of Intact and Regenerating Zebrafish Retina
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Purpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression profiles of control and post-lesion retina of adult zebrafish, a system that regenerates following injury.

Publication Title

Gene expression profiles of intact and regenerating zebrafish retina.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9537
Microarray analysis of perichondral and reserve growth plate zones
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In the growth plate, the reserve and perichondral zones have been hypothesized to have similar functions, but their exact functions are poorly understood. Our hypothesis was that significant differential gene expression exists between perichondral and reserve chondrocytes that may differentiate the respective functions of these two zones. Normal Sprague-Dawley rat growth plate chondrocytes from the perichondral zone (PC), reserve zone (RZ), proliferative zone (PZ), and hypertrophic zone (HZ) were isolated by laser microdissection and then subjected to microarray analysis. In order to most comprehensively capture the unique features of the two zones, we analyzed both the most highly expressed genes and those that were most significantly different from the proliferative zone (PZ) as a single comparator.

Publication Title

Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact