refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 134 results
Sort by

Filters

Technology

Platform

accession-icon GSE78501
Gene expression profiling of genes differentially expressed by oral carcinoma Ca9-22 and SLPI-deficient Ca9-22 (SLPI) cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used the myoma model in conjunction with gene expression profiling with microarray data as an efficient tool for high throughput analysis and to screen for differentially expressed genes. Our aim was to identify candidates playing an important role in SLPI and/or MMP-promoted tumor invasion by comparing oral carcinoma Ca9-22 cells, which highly express secretory leukocyte protease inhibitor (SLPI) gene, with SLPI-deficient Ca9-22 cells.

Publication Title

Human uterus myoma and gene expression profiling: A novel in vitro model for studying secretory leukocyte protease inhibitor-mediated tumor invasion.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE106091
Genes regulated by TTF-1 in small cell lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate genes possibly regulated by TTF-1 in small cell lung cancer cell lines, we compared gene expression profiles of NCI-H209 and Lu139 cell lines electroporated with control and TTF-1 siRNAs.

Publication Title

An integrative transcriptome analysis reveals a functional role for thyroid transcription factor-1 in small cell lung cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34010
Expression data from mouse intestine: C57Bl/6 MTHFR+/- vs BALB/c MTHFR+/-
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Previous studies in our laboratory have shown that low folate diet (control diet with 2mg folate/kg, low folate diet with 0.3mg folate/kg) can induce intestinal tumors in BALB/c mice. In addition, we reported that C57Bl/6J mice did not form tumors under the same conditions.

Publication Title

Differential gene expression and methylation in the retinoid/PPARA pathway and of tumor suppressors may modify intestinal tumorigenesis induced by low folate in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP064305
Genes regulated by TAZ in a lung fibroblast cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

To investigate the roles of TAZ in lung fibroblasts, we compared the expression profiles of a lung fibroblast cell line, HFL-1, transfected with control siRNA and siTAZ. Overall design: We collected RNA from HFL-1 cells transfected with control siRNA and siTAZ. Two kinds of TAZ siRNAs (siTAZ #1 and siTAZ #2) were used. Two biological replicates (rep1 and rep2) were used for each condition.

Publication Title

TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51270
Genes regulated by TAZ in lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To investigate the roles of TAZ in lung cancer cell proliferation, we compared the expression profiles of A549 and H441 lung adenocarcinoma cell lines transfected with control siRNA and siTAZ.

Publication Title

An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE58624
Identification of the possible molecules by which acquired platinum resistance induces EMT-like changes in urothelial carcinoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To identify the possible targets in EMT-acquisition after developing acquired platinum resistance in urothelial carcinoma (UC), we examined the changes in global gene expression before and after development of acquired platinum resistance. Comparing two types of acquired platinum resistant UC cells and their corresponding parent cells, in the end we identified 49 genes (25 up-regulated and 24 down-regulated genes) which were commonly changed in two acquired platinum resistant UC cells.

Publication Title

Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP102811
Transcriptome analysis of normal human lung fibroblasts (NHLFs) following TBX4 knockdown.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

TBX4 is a transcription factor unique to lung fibroblasts and is associated with super-enhancer. RNA-sequencing analysis on NHLFs following TBX4 knockdown revealed a broad array of genes possibly regulated by TBX4. Overall design: NHLFs were transfected with siRNAs for TBX4, and RNA-sequencing was performed using Illumina HiSeq.

Publication Title

TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE147281
Leukemic cells expressing NCOR1-LYN are sensitive to dasatinib in vivo in a patient-derived xenograft mouse model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a distinct subtype of B-ALL with a poor prognosis. Rearrangement of LYN is a recurrent genetic abnormality in Ph-like ALL, but functional analysis of LYN-related fusion genes identified in ALL has not been reported. In this study, we performed functional analysis of the NCOR1-LYN fusion gene identified in a pediatric Ph-like ALL patient to establish its potential for molecular targeted therapy. Retroviral transduction of interleukin (IL)-3-dependent Ba/F3 cells with NCOR1-LYN enabled IL-3-independent proliferation, with constitutive phosphorylation of the tyrosine residues of the LYN kinase domain in the fusion protein. Replacing tyrosine residues with phenylalanine in the LYN kinase domain abolished IL-3 independence. Tyrosine kinase inhibitor dasatinib killed Ba/F3 cells expressing NCOR1-LYN in vitro accompanied by dephosphorylation of the tyrosine residues of the LYN kinase domain in the fusion protein.

Publication Title

Leukemic cells expressing NCOR1-LYN are sensitive to dasatinib in vivo in a patient-derived xenograft mouse model.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21887
Identification of EP4 as a Potential Target for the Treatment of Castration-Resistant Prostate Cancer Using a Novel Xenograft Model
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

More effective therapeutic approaches for castration-resistant prostate cancer (CRPC) are urgently needed, thus reinforcing the need to understand how prostate tumors progress to castration resistance. We have established a novel mouse xenograft model of prostate cancer, KUCaP-2, which expresses the wild-type androgen receptor (AR) and which produces the prostate-specific antigen (PSA). In this model, tumors regress soon after castration, but then reproducibly restore their ability to proliferate after 1 to 2 months without AR mutation, mimicking the clinical behavior of CRPC. In the present study, we used this model to identify novel therapeutic targets for CRPC. Evaluating tumor tissues at various stages by gene expression profiling, we discovered that the prostaglandin E receptor EP4 subtype (EP4) was significantly upregulated during progression to castration resistance. Immunohistochemical results of human prostate cancer tissues confirmed that EP4 expression was higher in CRPC compared with hormone-nave prostate cancer. Ectopic overexpression of EP4 in LNCaP cells (LNCaP-EP4 cells) drove proliferation and PSA production in the absence of androgen supplementation in vitro and in vivo. Androgen-independent proliferation of LNCaP-EP4 cells was suppressed when AR expression was attenuated by RNA interference. Treatment of LNCaP-EP4 cells with a specific EP4 antagonist, ONO-AE3-208, decreased intracellular cyclic AMP levels, suppressed PSA production in vitro, and inhibited castration-resistant growth of LNCaP-EP4 or KUCaP-2 tumors in vivo. Our findings reveal that EP4 overexpression, via AR activation, supports an important mechanism for castration-resistant progression of prostate cancer. Furthermore, they prompt further evaluation of EP4 antagonists as a novel therapeutic modality to treat CRPC.

Publication Title

Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65968
MYEOV as a novel biomarker for human non-small cell lung cancer
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To investigate the roles of MYEOV in lung cancer cell proliferation, we compared the expression profiles of A549 lung adenocarcinoma cell lines transfected with control siRNA and siMYEOV.

Publication Title

Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact