refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 750 results
Sort by

Filters

Technology

Platform

accession-icon GSE22155
Gene Expression Profiling-Based Identification of Molecular Subtypes in Stage IV Melanoma with Different Clinical Outcome
  • organism-icon Homo sapiens
  • sample-icon 79 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22153
Gene Experssion Profiling-Based Identification of Molecular Subtypes in Stage IV Melanoma with Different Clinical Outcome (test set)
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Purpose: The incidence of malignant melanoma is increasing worldwide in fair-skinned populations. Melanomas respond poorly to systemic therapy, and metastatic melanomas inevitably become fatal. Although spontaneous regression, likely due to immune defense activation, rarely occurs, we lack a biological rationale and predictive markers in selecting patients for immune therapy. Experimental Design: We performed unsupervised hierarchical clustering of global gene expression data from stage IV melanomas in 57 patients. For further characterization, we used immunohistochemistry of selected markers, genome-wide DNA copy number analysis, genetic and epigenetic analysis of the Q3 CDKN2A locus, and NRAS/BRAF mutation screening. Results: The analysis revealed four distinct subtypes with gene signatures characterized by expression of immune response, pigmentation differentiation, proliferation, or stromal composition genes. Although all subtypes harbored NRAS and BRAF mutations, there was a significant difference between subtypes (P < 0.01), with no BRAF/NRAS wild-type samples in the proliferative subtype. Additionally, the proliferative subtype was characterized by a high frequency of CDKN2A homozygous deletions (P < 0.01). We observed a different prognosis between the subtypes (P = 0.01), with a particularly poor survival for patients harboring tumors of the proliferative subtype compared with the others (P = 0.003). Importantly, the clinical relevance of the subtypes was validated in an independent cohort of 44 stage III and IV melanomas. Moreover, low expression of an a priori defined gene set associated with immune response signaling was significantly associated with poor outcome (P = 0.001). Conclusions: Our data reveal a biologically based taxonomy of malignant melanomas with prognostic effect and support an influence of the antitumoral immune response on outcome.

Publication Title

Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22154
Gene Experssion Profiling-Based Identification of Molecular Subtypes in Stage IV Melanoma with Different Clinical Outcome (validation set)
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Purpose: The incidence of malignant melanoma is increasing worldwide in fair-skinned populations. Melanomas respond poorly to systemic therapy, and metastatic melanomas inevitably become fatal. Although spontaneous regression, likely due to immune defense activation, rarely occurs, we lack a biological rationale and predictive markers in selecting patients for immune therapy. Experimental Design: We performed unsupervised hierarchical clustering of global gene expression data from stage IV melanomas in 57 patients. For further characterization, we used immunohistochemistry of selected markers, genome-wide DNA copy number analysis, genetic and epigenetic analysis of the Q3 CDKN2A locus, and NRAS/BRAF mutation screening. Results: The analysis revealed four distinct subtypes with gene signatures characterized by expression of immune response, pigmentation differentiation, proliferation, or stromal composition genes. Although all subtypes harbored NRAS and BRAF mutations, there was a significant difference between subtypes (P < 0.01), with no BRAF/NRAS wild-type samples in the proliferative subtype. Additionally, the proliferative subtype was characterized by a high frequency of CDKN2A homozygous deletions (P < 0.01). We observed a different prognosis between the subtypes (P = 0.01), with a particularly poor survival for patients harboring tumors of the proliferative subtype compared with the others (P = 0.003). Importantly, the clinical relevance of the subtypes was validated in an independent cohort of 44 stage III and IV melanomas. Moreover, low expression of an a priori defined gene set associated with immune response signaling was significantly associated with poor outcome (P = 0.001). Conclusions: Our data reveal a biologically based taxonomy of malignant melanomas with prognostic effect and support an influence of the antitumoral immune response on outcome.

Publication Title

Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE57015
Hippocampal expression data from FTY720- and vehicle-treated SCID mice following fear consolidation testing
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

FTY720/Fingolimod, an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. Here we show that FTY720 enters the nucleus where it is phosphorylated by sphingosine kinase 2 (SphK2) and nuclear FTY720-P that accumulates there, binds and inhibits class I histone deacetylases (HDACs) enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in various brain regions, including hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning leading to improvement of memory impairment independently of its immunosuppressive actions. Our data suggest that sphingosine-1-phosphate and SphK2 play specific roles in memory functions and that FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories.

Publication Title

Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE49028
Fyn-dependent prefrontal cortex gene networks in acute ethanol sensitivity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fyn kinase has been implicated in multiple behavioral responses to ethanol and in the regulation of myelin gene expression. Here we tested whether Fyn kinase modulated basal or ethanol-responsive expression of genes regulated by acute ethanol in brain regions of the mesolimbocortical dopamine pathway.

Publication Title

Fyn-dependent gene networks in acute ethanol sensitivity.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE53679
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers
  • organism-icon Xenopus laevis
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2), Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2189
A549 teatement with MGd
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human lung cancer (A549) cells were treated 50uM of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd) for 4, 12, and 24 hrs and expression compared to control cells (treated with 5% mannitol for the same length of time)

Publication Title

Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53677
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers [X_laevis_2]
  • organism-icon Xenopus laevis
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network.

Publication Title

Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53678
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers [Xenopus_laevis]
  • organism-icon Xenopus laevis
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulation provide novel tools to understand the neural crest induction network.

Publication Title

Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE143419
Expression data from brain-regions of mice in varying CIE and drinking states
  • organism-icon Mus musculus
  • sample-icon 224 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Persistent changes in brain gene expression are hypothesized to underlie thealtered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption.

Publication Title

Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact