refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 21 results
Sort by

Filters

Technology

Platform

accession-icon GSE18600
Importance of histone demethylation in adipogenic differentiation and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43651
Regulation of the epithelial adhesion molecule CEACAM1 is essential for palate formation.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1.

Publication Title

Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38832
NFAT transcriptional activity is associated with metastatic capacity in colon cancer
  • organism-icon Homo sapiens
  • sample-icon 120 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Colorectal carcinoma is the third leading cause of cancer-related death in the United States. In order to understand the mechanism/signaling pathways responsible for invasion, migration and metastasis in colorectal cancer, we developed an integrative and comparative genetic approach to infer transcriptional regulatory mechanisms underlying colon cancer progression. Accordingly, we filtered fourteen human colorectal cancer (CRC) microarray data sets, from an immune competent mouse model of metastasis to identify known and novel transcriptional regulators in CRC. Using this approach, Nuclear Factor of Activated T cells (NFAT) family of transcription factors were identified as metastasis driver of colon cancer. NFAT family of transcription factors is known to induce gene transcription in various disease processes, including carcinogenesis. We used parental and metastatic derivatives of MC38 mouse colon cancer cells (MC38Par and MC38Met, respectively) to evaluate the role of NFATc1 in cancer cell invasiveness. We found that high NFATc1 expression correlates with significantly increased (p<0.0001) Trans-Endothelial Invasion (TEI) in MC38Met cells. Conversely, RNAi-based inhibition of NFATc1 expression and functional inhibition with calcineurin inhibitor FK506 in MC38Met cells, both resulted in significant decreased TEI (p=0.0193 & p=0.0003). Furthermore, a set of predicted NFATc1 target mRNAs identified in our original analysis were downregulated by knock-down of NFATc1 or functional inhibition with FK506 in MC38Met cells. The expression level (mRNA) of predicted gene targets were high in human CRC specimens which had higher than median NFATc1 mRNA expression (n=11 out of total 22). The tumor-associated NFATc1 co-regulated gene signature is significantly correlated with both disease-specific and disease-free survival in Stage II and III CRC patients. We have successfully demonstrated a bioinformatics approach to identify a tumor promoter driver gene NFATc1. Our studies suggest a role of NFATc1 towards invasion and its co-regulated gene signature for poor outcomes in colorectal cancer.

Publication Title

Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79623
Gene expression analysis in the aorta from non-diabetic or STZ-induced diabetic apolipoprotein E deficient (ApoE-/-) mice fed with high fat diet in the presence or absence of PKC inhibitor, ruboxistaurin (RBX, or LY333531)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We found that hyperglycemia and elevated fatty acids in diabetes could activate protein kinase C- isoforms and selectively induce insulin resistance via inhibiting vascular insulin signaling.

Publication Title

Insulin decreases atherosclerosis by inducing endothelin receptor B expression.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP014197
tRNA fragment profiling in CLP1 mutant (kinase-dead) mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Loss of CLP1 activity results in the accumulation of novel sets of small RNA fragments derived from aberrant processing of tyrosine pre-tRNA. Such tRNA fragments sensitize cells to oxidative stress-induced p53 activation and p53-dependent cell death. Overall design: 2 samples, Wt and Clp1(k/k), no replicates

Publication Title

CLP1 links tRNA metabolism to progressive motor-neuron loss.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE55201
Suppression of inflammation in psoriasis blood after IL-17 treatment with ixekizumab
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The effect of anti-IL-17 treatment on systemic inflammation is not fully understand. Using cDNA microarray, genomic analysis methods such as GSEA and ingenuity, we characterized the transcriptional changes in the blood of psoriasis patients afer systemic neutralization of IL-17 compared to baseline (before treatment). We also compared the whole blood-derived transcriptome between psoraisis patients at baseline and healthy volunteers to examine systemic inflammation in psoriasis patients.

Publication Title

IL-17 induces inflammation-associated gene products in blood monocytes, and treatment with ixekizumab reduces their expression in psoriasis patient blood.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP156330
Next generation sequencing facilities quantitative analysis of KMST6 cells expressing AUG-initiated c-Myc and CUG-initiated c-Myc.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To investigate the differences of transcriptional activities between AUG-initiated c-Myc and CUG-initiated c-Myc , we performed a transcriptomic analysis using high throoughput RNA sequencing (RNA-seq). Overall design: Total RNA extracted from KMST6 fibroblast cells stably expressing AUG-initiated c-Myc, CUG-initiated c-Myc, and empty vector (negative control) was subjected to RNA-seq analysis. The sequencing libraries generated from the RNA were analyzed by Illumina Hiseq 4000. The sequencing reads were trimmed for adaptor sequence, and low-complexity or low-quality reads were removed. Subsequently, the sequencing reads were aligned to the human reference GRCh38 genome using Gencode v27 annotations by STAR. Read counts per gene were quantified using the HTSeq Python package.

Publication Title

Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP156328
Next generation sequencing facilities quantitative analysis of negative control HCT116 cells and 5MP1-overexpressed HCT116 cells.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To investigate the downstream targets of eIF5 mimic protein 1 (5MP1), also known as Basic Leucine Zipper and W2 domains 2 (BZW2; Ensembl:ENSG00000136261), we performed a transcriptomic analysis using high throoughput RNA sequencing (RNA-seq). Overall design: Total RNA extracted from HCT116 cells stably expressing 5MP1 and empty vector-transfected negative control HCT116 cells was subjected to RNA-seq analysis. The sequencing libraries generated from the RNA were analyzed by Illumina Hiseq 4000. The sequencing reads were trimmed for adaptor sequence, and low-complexity or low-quality reads were removed. Subsequently, the sequencing reads were aligned to the human reference GRCh38 genome using Gencode v27 annotations by STAR. Read counts per gene were quantified using the HTSeq Python package.

Publication Title

Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE12679
Laser capture microdissection of endothelial and neuronal cells from human dorsolateral prefrontal cortex
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from patients with schizophrenia and bipolar disorder and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using Affymetrix HG133plus2.0 GeneChips. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology.

Publication Title

The cerebral microvasculature in schizophrenia: a laser capture microdissection study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP174478
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.

Publication Title

Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact