refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 356 results
Sort by

Filters

Technology

Platform

accession-icon GSE13743
Comparison of nave, postmitotic (CD44-lo/CD62L-hi) and effector (CD44-hi/CD62L-lo) CD8+ Tcells during BMT in GVHD mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Nave CD44-lo/CD62L-hi/CD8+ T cells from C3H.SW mice were compared to CD44-hi/CD82L-lo/CD8+ effector memory T cells and CD44-lo/CD62L-hi/CD8+ postmitotic T cells, using 3 biological replicates of each type of sample. The later two cells types were highly purified at day 14 after transplantation from GVHD B6/SJL mice receiving donor C3H.SW mouse-derived naive CD44-lo/CD62L-hi/CD8+ T cells and T cell-depleted bone marrow. Recipient mice had first been lethally irradiated at a dose of 10Gy in two fractions. This is a MHC-identical minor histocompatibility antigen-mismatched mouse GVHD model of human allogeneic hematopoietic stem cell transplantation. Naive T cell samples were from pools of 2 mice each, while effector memory and postmitotic T cell samples were purified from pools of T cells from 4 mice each. After RNA extraction and cleanup, biotin labeled cRNA was prepared from 600 ng total RNA, using two rounds of in vitro transcription, and hybridized to Affymetrix Mouse Genome 430A 2.0 arrays using standard techniques.

Publication Title

Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE51498
Regulation of HSF1-mediated transcriptional programs by PGC-1alpha
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We examined global gene expression patterns in response to PGC-1 expression in cells derived from liver or muscle.

Publication Title

Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81171
Inhibition of adhesion molecule gene expression and cell adhesion by the metabolic regulator PGC-1alpha
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood.

Publication Title

Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE87100
Control of secreted protein gene expression and the mammalian secretome by the metabolic regulator PGC-1a
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Secreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes and signal molecules. In this study we demonstrate, unexpectedly, that PGC-1, a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate expression of diverse genes encoding secreted molecules and extracellular matrix (ECM) components to modulate the secretome. We show that both endogenous and exogenous PGC-1 down-regulate expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1 on expression of genes encoding secreted proteins. Interestingly, PGC-1 requires the central heat shock response regulator HSF1 to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1 modulates the secretome of mouse embryonic fibroblasts (MEFs).

Publication Title

Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP173933
Regulation of cardiac transcription by thyroid hormone and Med13
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: The objective of this study was to determine cardiac transcriptional pathways regulated in response to 1.) hypothyroidism and re-establishment of a euthyroid state and 2.) Med13-dependent cardiac transcriptional pathways regulated in response to hypothyroidism and re-establishment of a euthyroid state Overall design: Methods: WT and Med13 cardiac-specific knockout mice (Med13cKO) were put on a normal chow or PTU diet at 8 weeks of age for a duration of 4 weeks. A third group was put on a PTU diet for 4 weeks followed by 3 daily injections of T3.

Publication Title

Regulation of cardiac transcription by thyroid hormone and Med13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40116
mRNA profiling of glucose-repressed 14-3-3 and hdac yeast mutants
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Previous results suggest that Bmh might inhibit the activity of the transcription factor Adr1 after binding to Adr1-dependent promoters. In a strain lacking the two major histone deacetylases, Hda1 and Rpd3 (hdac), Adr1 is bound to its target promoters recruiting what appears to be an inactive RNA ploymerase II preinitiation complex (PIC). To determine whether Bmh activity inhibits this inactive PIC and the generality of this effect on glucose-repressed gene expression, the mRNA profiles of wild type, bmh mutant, hdac mutant, and bmh hdac mutant cells grown in high glucose medium were compared.

Publication Title

14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4671
Microarray Analysis of the Delipidation of White Adipose Tissue of Mice Fed Conjugated Linoleic Acid
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The white adipose tissue (WAT) rapidly loses mass when mice are fed a diet containing trans-10, cis-12 conjugated linoleic acid (t10c12 CLA). A microarray analysis of WAT due to CLA feeding was performed to better define the processes and genes involved. WAT weight decreased by ca. 80% over 17 days of feeding a 0.5% t10c12 CLA diet. The lipid volume decreased by 90% and the number of adipocytes and total cells were reduced by15% and 47%, respectively. Microarray profiling of replicated pools of control and treated mice (n=140) at seven time points over the 17day feeding indicated between 2798 to 4318 genes showed mRNA changes of 2-fold or more. Transcript levels for genes of glucose and fatty acid import or biosynthesis were significantly reduced. A prolific inflammation response was indicated by the 2 to100-fold induction of many cytokine transcripts, including those for IL-6, IL1?, TNF ligands, and CXC family members

Publication Title

Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis.

Sample Metadata Fields

Age

View Samples
accession-icon GSE27328
Transcriptome analysis on ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We are studying signaling pathways and growth properties of cultured human ovarian cancer cells that are expressing the G protein-coupled receptor, luteinizing hormone receptor (LHR),particularly interested in the changes that occur when the receptor is activated by its cognate ligand, gonadotropin (LH). To investigate these questions, we have employed the SKOV3 ovarian cancer cell line that has been stably transfected with LHR, and can then test the response of these cells in culture following exposure to LH.

Publication Title

Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE14888
Conjugated linoleic acid activates AMPK and reduces adiposity more effectively when used with metformin
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, cis-12 conjugated linoleic acid (t10c12 CLA) causes dramatic reductions in white adipose tissue in mice but has had limited effectiveness in humans. Determination of the signaling pathways involved may lead to better regulation of adiposity. T10c12 CLA was found to activate AMP-activating protein kinase (AMPK), a central regulator of cell metabolism. Compound C, a potent inhibitor of AMPK, prevents many of the typical responses to treatments with t10c12 CLA including the integrated stress response (ISR), the inflammatory response, the reduction in key lipogenic transcription factors, and delipidation. Treatment of adipocytes or mice with t10c12 CLA in conjunction with AMPK activator metformin results in more delipidation than treatment with the individual chemicals. Additionally, the combination showed a reduced inflammatory response relative to a t10c12 CLA treatment alone. The combination of t10c12 CLA and metformin, widely used to treat insulin resistance and Type II diabetes, has potential as a treatment for reducing adiposity in humans.

Publication Title

Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14900
Transcriptional response of human cells to the absence of mitochondrial DNA
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nuclear genome (nDNA). Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. With this experiment we aimed to identify the set of nuclear genes that significantly change their expression level in response to depletion of mtDNA.

Publication Title

How do human cells react to the absence of mitochondrial DNA?

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact