refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 356 results
Sort by

Filters

Technology

Platform

accession-icon SRP057512
Impact of flanking chromosomal sequences on localization and silencing by the ncRNA XIST
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We performed RNA-seq and ChIP-seq on clones of human cell lines carrying an inducible XIST transgene on 1p, 8p, or 12q to study the effects of allelic silencing in cis Overall design: Total gene expression and allelic changes were examined in HT1080 clones carrying an inducible XIST transgene on 1p, 8p, or 12q after induction by doxycycline. A replicate was done for the 8p clone treated with DOX. An additional 1p clone integrated with an empty vector, and an 1p, 8p, and 12q clone without induction were included as controls. ChIP was performed on the 8p clone to investigate the changes in H3K27 acetylation and trimethylation.

Publication Title

Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51498
Regulation of HSF1-mediated transcriptional programs by PGC-1alpha
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We examined global gene expression patterns in response to PGC-1 expression in cells derived from liver or muscle.

Publication Title

Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81171
Inhibition of adhesion molecule gene expression and cell adhesion by the metabolic regulator PGC-1alpha
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood.

Publication Title

Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE87100
Control of secreted protein gene expression and the mammalian secretome by the metabolic regulator PGC-1a
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Secreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes and signal molecules. In this study we demonstrate, unexpectedly, that PGC-1, a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate expression of diverse genes encoding secreted molecules and extracellular matrix (ECM) components to modulate the secretome. We show that both endogenous and exogenous PGC-1 down-regulate expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1 on expression of genes encoding secreted proteins. Interestingly, PGC-1 requires the central heat shock response regulator HSF1 to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1 modulates the secretome of mouse embryonic fibroblasts (MEFs).

Publication Title

Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP019500
MicroRNA-146 function in the innate immune response of zebrafish embryos to Salmonella typhimurium infection [RNA-seq]
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We used zebrafish embryos as an in vivo system to investigate the role of the microRNA-146 family (consisting of 2 members miR-146a and miR-146b) in the innate immune response to S. typhimurium infection. To determine the role of miR-146 microRNAs in the response to S. typhimurium infection we used Illumina RNA sequencing to compare the mRNA expression profiles of control embryos versus embryos with knockdown of miR-146a and miR-146b. RNA sequencing analysis of miR-146 knockdown embryos showed no major effects on pro-inflammatory gene expression or on the expression of transcriptional regulators and signal transduction components of the immune response. In contrast, apoliprotein-mediated lipid transport emerged as an infection-inducible pathway under miR-146 knockdown conditions, suggesting a function of miR-146 in regulating lipid metabolism during inflammation. Overall design: Embryos were injected at the one cell stage with a combination of two morpholinos targeting miR-146a and miR-146b, or with the standard control morpholino from GeneTools. Subsequently, at 28 hours post fertilzation (hpf) they were infected by injecting 200-250 colony forming units of S. typhimurium strain SL1027 into the caudal vein, or mock-injected with PBS. RNA was isolated at 8 hours post injection (hpi) for Illumina RNAseq analysis. Two independent experiments were performed for RNAseq analysis of biological duplicates.

Publication Title

MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP099303
Retinoic acid signaling is dispensable for somatic development and function of the developing ovary
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldha1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not affect granulosa cell specification or fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Overall design: Ovaries from six week old mice with five replicates in each of two genotypes were analyzed by RNA-Seq

Publication Title

Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE35340
Notch is active in Langerhans Cell Histiocytosis and confers pathognomonic features on dendritic cells.
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Langerhans cell histiocytosis (LCH) is a disease characterized by the accumulation of eponymous CD1a+ Langerin+ Langerhans-cell (LC)-like dendritic cells (DC) of largely unknown origin. Here we have performed comparative transcriptome analysis of highly purified CD207+/CD1a+ Langerhans cell histiocytosis (LCH) cells derived from different locations and disease courses and three major human dendritic cell lineages: epidermal Langerhans cells, myeloid dendritic cells (mDC1) and plasmacytoid dendritic cells (pDC) in order to investigate the relationship between LCH cells and naturally occurring dendritic cells. Data obtained indicate that LCH cells form a distinct DC entity. Furthermore, we have identified transcripts that are uniquely expressed by LCH cells in comparison to LC, mDC1, and pDC, and induce LCH-specific features in human DC.

Publication Title

Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP170684
Spontaneously slow-cycling subpopulations of human cells originate from activation of stress response pathways
  • organism-icon Homo sapiens
  • sample-icon 78 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Slow-cycling subpopulations exist in bacteria, yeast, and mammalian systems. In the case of cancer, slow-cycling subpopulations have been proposed to give rise to drug resistance. However, the origin of slow-cycling human cells is poorly studied, in large part due to lack of markers to identify these rare cells. Slow-cycling cells pass through a non-cycling period marked by low CDK2 activity and high p21 levels. Here, we use this knowledge to isolate these naturally slow-cycling cells from a heterogeneous population and perform RNA-sequencing to delineate the transcriptome underlying the slow-cycling state. We show that cellular stress responses – the p53 transcriptional response and the integrated stress response – are the most salient causes of spontaneous entry into the slow-cycling state. Overall design: mRNA profiling of spontaneously quiescent human cells and cells forced into quiescence by four different methods

Publication Title

Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP056395
Comparative whole-transcriptomic analysis between normal and AKAP-Lbc-depleted human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Human embryonic stem cells (hESCs) have the unique property of immortality, ability to infinitely self-renew and survive in vitro. In contrast to tumor-deribed cells, their immortality are free from any genomic abberations. Instead, they depend on the AKAP-Lbc/Rho signaling cascade. To understand the downstream way, we performed RNA-seq analyses between normal and AKAP-Lbc-depleted hESCs using the doxycyclin-inducible gene silensing strategy. Overall design: We use the genetically modified hESCs in which AKAP-13-targeting shRNA is induced by doxycyclin(dox) treatment. To minimize cell loss during treatment, anti-apoptotic factor Bcl-XL is overexpressed. We collected RNA from dox-treated and untreated cells in biological triplicate. We measured gene expression in these 2 sample groups using RNA-seq (illumina HiSeq) .

Publication Title

Rho-Signaling-Directed YAP/TAZ Activity Underlies the Long-Term Survival and Expansion of Human Embryonic Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6904
Expression data from mouse SCN after 30-min light pulse
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Using laser capture microscopy and microarray analysis, a population of genes rapidly induced by light in the suprachiasmatic nucleus is identified.

Publication Title

Identification of novel light-induced genes in the suprachiasmatic nucleus.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact