refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 118 results
Sort by

Filters

Technology

Platform

accession-icon GSE17708
Time Course of TGF-beta treatment of A549 lung adenocarcinoma cell line
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Time Course of TGF-beta treatment of A549 lung adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments.

Publication Title

ConceptGen: a gene set enrichment and gene set relation mapping tool.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE7793
Vancomycin nephrotoxicity assessed by DNA microarray
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear.

Publication Title

Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP068356
Transcription factor ATF4 directs basal and select gene expression in the unfolded protein response and cholesterol metabolism in liver
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the physiological role of ATF4 within mouse liver, under basal and ER stress conditions. With three mice per group, and approximately 30 million reads per sample, we obtained genome-wide role of ATF4 within the liver. We find ATF4 is responsible for a small subset of ER stress genes, and larger than previously thought basal subset. Overall design: Examination of the loss of ATF4 basally and during 6 hour Tunicamycin induced ER stress

Publication Title

Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE61277
Expression data from 76N human mammary epithelial cells (hMECs)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to detail the global programme of gene expression after knockdown of Ecdysoneless in hMECs

Publication Title

The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52707
Nuclear factor kappa B activation-induced anti-apoptosis renders HER2 positive cells drug resistant and accelerates tumor growth
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast cancers with HER2 overexpression are sensitive to drugs targeting the receptor or its kinase activity. HER2-targeting drugs are initially effective against HER2- positive breast cancer, but resistance inevitably occurs. We previously found that nuclear factor kappa B is hyper-activated in the subset of HER-2 positive breast cancer cells and tissue specimens. In this study, we report that constitutively active NF-B rendered HER2-positive cancer cells resistant to anti-HER2 drugs, and cells selected for Lapatinib resistance up-regulated NF-B. In both circumstances, cells were anti-apoptotic and grew rapidly as xenografts. Lapatinib-resistant cells were refractory to HER2 and NF-B inhibitors alone but were sensitive to their combination, suggesting a novel therapeutic strategy. A subset of NF-B-responsive genes was overexpressed in HER2-positive and triple-negative breast cancers, and patients with this NF-B signature had poor clinical outcome. Anti-HER2 drug resistance may be a consequence of NF-B activation, and selection for resistance results in NF-B activation, suggesting this transcription factor is central to oncogenesis and drug resistance. Clinically, the combined targeting of HER2 and NF-B suggests a potential treatment paradigm for patients who relapse after anti-HER2 therapy. Patients with these cancers may be treated by simultaneously suppressing HER2 signaling and NF-B activation.

Publication Title

NF-κB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71124
Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T Cell Dependent Immunity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Primary T cell activation involves the integration of three distinct signals delivered in sequence: 1) antigen recognition, 2) costimulation, and 3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing bystander T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4+ T cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted nave CD4+ but not CD8+ T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4+ T cell activation affecting memory generation, induction of autoimmunity, as well as impaired viral clearance. These data highlight the critical regulation of nave CD4+ T cells during inflammatory conditions.

Publication Title

Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE45702
DNA methylation status of myelinating Schwann cells during development and in diabetic neuropathy
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

S-adenosylmethionine levels regulate the schwann cell DNA methylome.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE43682
Transcriptome of mouse pluripotent embryonic stem cells (mESC) cultured in R2i, 2i, PD and SB conditions
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.

Publication Title

Inhibition of TGFβ signaling promotes ground state pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE45700
DNA methylation status of myelinating Schwann cells during development and in diabetic neuropathy [Gene Expression Array: C57Bl6J mice]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

DNA methylation is a key epigenetic regulator of mammalian embryogenesis and somatic cell differentiation. Using high-resolution genome-scale maps of methylation patterns, we show that the formation of myelin in the peripheral nervous system, proceeds with progressive DNA demethylation, which coincides with an upregulation of critical genes of the myelination process. More importantly, we found that, in addition to expression of DNA methyltransferases and demethylases, the levels of S-adenosylmethionine (SAMe), the principal biological methyl donor, could also play a critical role in regulating DNA methylation during myelination and in the pathogenesis of diabetic neuropathy. In summary, this study provides compelling evidence that SAMe levels need to be tightly controlled to prevent aberrant DNA methylation patterns, and together with recently published studies on the influence of SAMe on histone methylation in cancer and embryonic stem cell differentiation show that in diverse biological processes, the methylome, and consequently gene expression patterns, are critically dependent on levels of SAMe.

Publication Title

S-adenosylmethionine levels regulate the schwann cell DNA methylome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP019784
Transposon defense by endo-siRNAs, piRNAs and somatic pilRNAs: Roles of Loqs-PD and R2D2
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing mechanisms that repress TEs expression: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2 that primarily helps to direct siRNAs for loading into Ago2. We provide deep sequencing evidence consistent with the idea that R2D2 and Loqs-PD can function in part redundantly. Certain transposons display a preference for either dsRBD-protein for production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in the germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway. Overall design: small RNA sampling experiment; small RNAs were prepared from head & thorax as well as dissected ovaries of Adult female Drosophila melanogaster. We used homozygous mutants of the dsRBD proteins Loqs and r2d2 to determine their contribution to the biogenesis of transposon-derived small RNAs. Heterozygous mutant animals served as control. For each RNA sample, we performed one deep-sequencing run without any treatment, and in parallel one sequencing run after periodate oxidation and beta-elimination. After this treatment, only Ago2, Piwi, Aub and Ago3-loaded small RNAs remain as they carry a 2''-O-methyl modification at their 3''-end. This helps to determine the loading status of the small RNAs detected. In total 8 different RNA samples were prepared and 16 libraries were sequenced.

Publication Title

Transposon defense by endo-siRNAs, piRNAs and somatic pilRNAs in Drosophila: contributions of Loqs-PD and R2D2.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact