refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 302 results
Sort by

Filters

Technology

Platform

accession-icon GSE20540
Gene expression profiles of myeloma cells interacting with bone marrow stromal cells in vitro
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Conventional anti-cancer drug screening is typically performed in the absence of accessory cells (e.g. stromal cells) of the tumor microenvironment, which can profoundly alter anti-tumor drug activity. To address this major limitation, we have developed assays (e.g. the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay) to selectively quantify tumor cell viability, in presence vs. absence of non-malignant stromal cells or drug treatment. These assays have allowed us to identify that neoplastic cells from diverse malignancies exhibit stroma-induced resistance to different anti-tumor agents. In this analysis, we evaluated the molecular changes triggered in myeloma cells by their in vitro interaction with stromal cells. The transcriptional profile of 3 human multiple myeloma (MM) cell lines (MM.1S, MM.1R, INA-6) co-cultured with stromal cells vs. when cultured alone was characterized by oligonucleotide microarray analysis, using the human U133 plus 2.0 Affymetrix GeneChip.

Publication Title

Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE49124
Expression data from JQ1 (0.2 uM) treated tamoxifen-resistant MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Estrogen signaling pathway is critical for breast cancer development and has remained the major adjuvant therapeutic target for this disease. Tamoxifen has been used in clinic for many years to treat ER-positive breast cancer. However a great many (30%) suffer relapse due to drug resistance. In this study, the bromodomain inhibitor JQ1 was found to down-regulate ERalpha gene expression and have anti-tumor effect in cultured tamoxifen-resisant breast cancer cells.

Publication Title

An epigenomic approach to therapy for tamoxifen-resistant breast cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE63539
GATA2 facilitates steroid receptor coactivator (SRC) recruitment to the androgen receptor (AR) complex
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon (ffymetrixhumanexon1.0starray[cdf:huex10stv2,corer3,a20071112,ep)

Description

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC), and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent (including constitutively active AR splice variants) mechanisms highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA2 as a regulator of AR signaling and a novel therapeutic target in PC. We demonstrate that GATA2 directly promotes AR expression (both full-length and splice variant), resulting in a strong positive correlation between GATA2 and AR expression in PC (cell lines and patient specimens). Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of AR (both full-length and splice variant). GATA2 co-localizes with AR and FOXA1 on chromatin to enhance recruitment of steroid receptor coactivators (SRCs) and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted for worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of AR (both full-length and splice variant) and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.

Publication Title

GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE42253
Gene expression data from T cells and NK cells with and without treatment with Hsp90 inhibitor (Geldanamycin)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells.

Publication Title

Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP094864
Neuropathic pain promotes gene expression adaptations in brain networks involved in stress and depression
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neuropathic pain is a complex chronic condition, characterized by a wide range of sensory, cognitive, and affective symptoms. Indeed, a large percentage of neuropathic pain patients are also afflicted with depression and anxiety disorders -- a pattern that is reliably replicated in animal models. Mounting evidence from clinical and preclinical studies indicates that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major determinant for depression. However, whether chronic pain and chronic stress affect similar mechanisms, and whether chronic pain can affect gene expression patterns known to be involved in depression, remains poorly understood. We employed the spared nerve injury model (SNI) of neuropathic pain in adult C57BL\6 mice and performed next-generation RNA-sequencing in order to monitor changes in gene expression in three brain regions known to be implicated in the pathophysiology of depression and in the modulation of pain: the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal grey (PAG). We observed mostly unique transcriptome profiles across the three brain regions but found common intracellular signal transduction pathways and biological functions were affected. A large amount of genes showing SNI-induced altered expression have been implicated in depression, anxiety, or chronic pain. In addition, we identified genes that are similarly regulated in a murine model of depression: chronic unpredictable stress. Our study provides the first unbiased characterization of neuropathic pain-induced long-term gene expression changes in three distinct brain regions, and presents evidence that neuropathic pain affects the expression of several genes that are also regulated by chronic stress. Overall design: RNA-seq samples were generated from 3 brain regions (nucleus accumbens, medial prefrontal cortex, and periaqueductal grey) of adult male mice, 2.5 months after sham or spared nerve injury to the sciatic nerve.

Publication Title

Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon SRP061785
RGS9-2-controlled adaptations in the striatum determine the onset of action and eficacy of antidepressants in neuropathic pain states
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The striatal protein Regulator of G protein signaling-2 (RGS9-2) plays a key modulatory role in opioid, monoamine and other GPCR responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood reward and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein a and bg subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5 (HDAC5), that are important for TCA responsiveness. Furthermore, information from RNA-seq analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states. Overall design: The RNAseq study was designed in order to reveal the impact of RGS9-2 on gene regulation in the Nucleus Accumbens under neuropathic pain and antidepressant treatment conditions. A total of 18 samples was used, coprising 6 different groups , and each group consisted of three different biological replicates.

Publication Title

RGS9-2--controlled adaptations in the striatum determine the onset of action and efficacy of antidepressants in neuropathic pain states.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37580
Identification of differentially expressed genes upon treatment with Eltrombopag in HL60 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of differentially expressed genes upon treatment with Eltrombopag in HL60 cells. HL60 cells were untreated, or treated with 3ug/ml of Eltrombopag for 36 hrs in RPMI with 10% FBS

Publication Title

Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56149
Microarray analysis of a Drosophila dopamine transporter mutant, fumin (fmn)
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We previously found a short sleeper mutant, fmn, and identified its mutation in the dopamine transporter gene. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found differentially expressed genes.

Publication Title

The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE71347
HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease can develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatics approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is altered. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and G1 to S phase transition. We show that HER2 signaling drives proliferation in breast cancer cells through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines cooperative signaling pathways for expression of tumorigenic gene networks. Our findings suggest this proliferative gene signature is amendable to pharmacological targeting. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance

Publication Title

HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE73970
Identifying the differentially expressed genes between ADI-PEG20 resistant and parental Ju77 cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Identifying the differentially expressed genes between ADI-PEG20 resistant and parental Ju77 cell line

Publication Title

Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact