refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE46405
Olig1 is a Smad cofactor involved in cell motility induced by transforming growth factor-b
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.

Publication Title

Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55034
DNA methylation and gene expression analysis during myogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.

Publication Title

DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE6939
CD4+ T cells gene-transduced with AML1, wild type Foxp3, and a Foxp3 mutant defective in binding to AML1
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To clarify how Foxp3 regulates its target genes, we performed co-immunoprecipitation experiments and found that Foxp3 physically bound to AML1/Runx1 (Ono, M. et al, Nature, 2007). In this series of study, we compared gene regulations by AML1, wild type Foxp3, and a Foxp3 mutant with defective binding to AML1.

Publication Title

Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE86158
Microarray data of epidermis and dermis from virgin and pregnant mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE86157
Microarray data of epidermal basal cells from ventral or dorsal skin of virgin and pregnant mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify genes expressed predominantly in the ventral skin epidermal basal cells of pregnant mice, we performed DNA microarray analysis by using FACS-purified epidermal basal cells from ventral skin at 0 and 16 dpc, and dorsal skin at 16 dpc.

Publication Title

Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE86156
Microarray data of dermal cells from ventral or dorsal skin of virgin and pregnant mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify genes expressed predominantly in the ventral skin dermis of pregnant mice, we performed DNA microarray analysis by using isolated dermal tissues from ventral skin at 0 and 15 dpc, PP2-injected ventral skin at 15 dpc, and dorsal skin at 15 dpc.

Publication Title

Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18148
Microarray analysis of Cbfb-deficient regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiles of Cbfb-deficient and control Treg cells were compared.

Publication Title

Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE70326
Expression data from cortical thymic epithelial cells ectopically expressing Aire
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Aire in medullary thymic epithelial cells plays an essential role in the negative selection through expression of broad arrays of tissue-restricted antigens.

Publication Title

Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE51510
Role of TTF-1/NKX2-1, Smad3 and Smad4 on lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE49675
Expression data of human lung adenocarcinoma cell line H441 treated with TTF-1/NKX2-1 siRNA and TGF-beta
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We determined and analyzed the effect of TTF-1/NKX2-1 on Smad3/Smad4 binding sites by ChIP-sequencing.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact