refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE55034
DNA methylation and gene expression analysis during myogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.

Publication Title

DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE46405
Olig1 is a Smad cofactor involved in cell motility induced by transforming growth factor-b
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.

Publication Title

Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57656
Identification and characterization of retinoic acid-responsive genes in mouse kidney development
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retinoic acid (RA) signaling regulates a variety of developmental processes through controlling the expression of numerous genes. Here, we have identified and characterized RA-responsive genes in mouse kidney development. Analysis of isolated embryonic kidneys cultured in the presence and absence of RA identified 33 candidates of RA-responsive genes. Most of these candidate genes were down-regulated by treatment with the RA receptor antagonist. Many of them have potential binding sites for Elf5, one of the RA-responsive genes, in their promoter region. Whole-mount in situ hybridization demonstrated that specific expression of Elf5 in the ureteric trunk depends on RA. RA-dependent expression in the ureteric trunk was also demonstrated for the sodium channel subunit Scnn1b, which has been shown to be the marker gene of the collecting duct. In contrast, the expression of Ecm1, Tnfsf13b and IL-33 was detected in the stromal mesenchymal cells. Both Tnfsf13b and IL-33 were previously shown to cause NF-B activation. We have demonstrated that the inhibition of NF-B signaling with specific inhibitors suppresses branching morphogenesis of the ureteric bud. Our study thus identifies and characterizes RA-dependent upregulated genes in kidney development, and suggests an involvement of NF-B signaling in the branching morphogenesis.

Publication Title

Identification and characterization of retinoic acid-responsive genes in mouse kidney development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36953
Gene expression profiles of triple-negative breast cancer cells under the condition of 3D proliferation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple-negative breast cancer (TNBC) is defined by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is the most lethal and aggressive subtype of breast cancer. However, the genes which relate to promote tumor aggressiveness in TNBC remain unclear.

Publication Title

Molecular hierarchy of heparin-binding EGF-like growth factor-regulated angiogenesis in triple-negative breast cancer.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE110429
ERK3 is essential for establishment of epithelial architecture
  • organism-icon Xenopus laevis
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE110427
ERK3 is essential for establishment of epithelial architecture [ERK3 KD]
  • organism-icon Xenopus laevis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Establishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE110428
ERK3 is essential for establishment of epithelial architecture [ERK3 KD vs. TFAP2A KD]
  • organism-icon Xenopus laevis
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Establishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.

Publication Title

The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35281
HIRA, a Conserved Histone Chaperone, Plays an Essential Role in Low-dose Stress Response via Transcriptional Stimulation in Fission Yeast
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9+ as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9D cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.

Publication Title

HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51046
Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Cholesterol has attracted significant attention as a possible lifespan regulator. It has been reported that serum cholesterol levels have an impact on mortality due to age-related disorders such as cardiovascular disease. Diet is also known to be an important lifespan regulator. Dietary restriction retards the onset of age-related diseases and extends lifespan in various organisms. Although cholesterol and dietary restriction are known to be lifespan regulators, it remains to be established whether cholesterol is involved in dietary restriction-induced longevity. Here, we show that cholesterol deprivation suppresses longevity induced by intermittent fasting, which is one of the dietary restriction regimens that effectively extend lifespan. We also found that cholesterol is required for the fasting-induced upregulation of transcriptional target genes such as the insulin/IGF-1 pathway effector DAF-16 and that cholesterol deprivation suppresses the long lifespan of the insulin/IGF-1 receptor daf-2 mutant. Remarkably, we found that cholesterol plays an important role in the fasting-induced nuclear accumulation of DAF-16. Moreover, knockdown of the cholesterol-binding protein NSBP-1, which has been shown to bind to DAF-16 in a cholesterol-dependent manner and to regulate DAF-16 activity, suppresses both fasting-induced longevity and DAF-16 nuclear accumulation. Furthermore, this suppression was not additive to the cholesterol deprivation-induced suppression, which suggests that NSBP-1 mediates, at least in part, the action of cholesterol to promote fasting-induced longevity and DAF-16 nuclear accumulation. These findings identify a novel role for cholesterol in the regulation of lifespan.

Publication Title

Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51510
Role of TTF-1/NKX2-1, Smad3 and Smad4 on lung cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact