refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 133 results
Sort by

Filters

Technology

Platform

accession-icon GSE19650
Expression data from epithelial cells during the process of multistep pancreatic carcinogenesis
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The host antitumor immunity changes drastically during carcinogenesis. Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a precursor lesion of pancreatic cancer and progresses according to adenoma-carcinoma sequence. We found that the host antitumor immune reaction changes from an immune response to immune tolerance between intraductal papillary-mucinous adenoma (IPMA) and intraductal papillary-mucinous carcinoma (IPMC).

Publication Title

CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE85577
Expression of rat hepatocytic progenitor cells with and without hepatic Thy1-positive cells in retrorsine/partial hepatectomy treated rats models.
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

We found that the transplantation of Thy1+ cells transiently increased the liver mass by expanding resident small hepatocy-like progenitor cells(SHPCs).

Publication Title

Transplantation of Thy1<sup>+</sup> Cells Accelerates Liver Regeneration by Enhancing the Growth of Small Hepatocyte-Like Progenitor Cells via IL17RB Signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43762
Expression profiling of glioma initiating cells (GICs) in the sphere and differentiation conditions
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glioma initiating cells (GICs) are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanism of GIC maintenance/differentiation, we established GIC clones from GBM patient tumors having the potential to differentiate into malignant gliomas in mouse intracranial xenograft, and established an in vitro glioma induction system by using serum stimulation.

Publication Title

Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin αV.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55314
Cerebellar RNA in Grid2 deficient mice.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Downsream of GRID2 in the mouse cerebellum.

Publication Title

Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP056037
RNA-sequencing in OS-RC-2 cells under the knockdown of Arkadia or ESRP2
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

Tumor-specific alternative splicing is implicated in the progression of cancer, including clear cell renal cell carcinoma (ccRCC). Using ccRCC RNA-sequencing data from The Cancer Genome Atlas, we found that epithelial splicing regulatory protein 2 (ESRP2), one of the key regulators of alternative splicing in epithelial cells, is expressed in ccRCC. ESRP2 mRNA expression did not correlate with the overall survival rate of ccRCC patients, but the expression of some ESRP-target exons correlated with the good prognosis and with the expression of Arkadia (also known as RNF111) in ccRCC. Arkadia physically interacted with ESRP2, induced polyubiquitination, and modulated its splicing function. Arkadia and ESRP2 suppressed ccRCC tumor growth in a coordinated manner. Lower expression of Arkadia correlated with advanced tumor stages and poor outcomes in ccRCC patients. This study thus reveals a novel tumor-suppressive role of the Arkadia-ESRP2 axis in ccRCC. Overall design: Expression of mRNA in a ccRCC cell line OS-RC-2 under the knockdown of Arkadia or ESRP2. Knock-down of ESRP2 was confirmed by RT-PCR because of low expression of ESRP2 which resulted in non-quantitative FPKM value.

Publication Title

The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP045635
RNA-sequencing in HEK293T cells under the knockdown of Arkadia or ESRP2
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

We evaluated the role of Arkadia and ESRP2 in HEK293T cells Overall design: Expression of mRNA in HEK293T cells under the knockdown of Arkadia or ESRP2

Publication Title

The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14103
Synchronized HTC116 cells: time course
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of synchronized HCT116 cells at various time points up to 10 hours following treatment with DMSO or Nocodazole.

Publication Title

A signature-based method for indexing cell cycle phase distribution from microarray profiles.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE59375
Gene expression profile of the neonatal female mouse brain after administration of testosterone propionate.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this study is to investigate the gene expression profiles during masculinization of neonatal female mice brain by exogenous androgen treatment.

Publication Title

Gene expression profile of the neonatal female mouse brain after administration of testosterone propionate.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE42703
Expression data from C. elegans in the presence or absence of copper sulfate
  • organism-icon Caenorhabditis elegans
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. The deletion mutants of this cascade show hypersensitivity to heavy metals like copper or cadmium. However, factors that function downstream of KGB-1 pathway are not well characterized.

Publication Title

The Caenorhabditis elegans JNK signaling pathway activates expression of stress response genes by derepressing the Fos/HDAC repressor complex.

Sample Metadata Fields

Age

View Samples
accession-icon GSE84949
Expression data from distal ileum of mice administered lactic acid bacteria, Lactococcus lactis C59 and Lactobacillus rhamnosus GG
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study aimed to investigate the effects of oral administration of lactic acid bacteria (LAB) on gene expression in murine ileum.

Publication Title

The distinct effects of orally administered Lactobacillus rhamnosus GG and Lactococcus lactis subsp. lactis C59 on gene expression in the murine small intestine.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact