refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 133 results
Sort by

Filters

Technology

Platform

accession-icon GSE61908
Early neuroinflammatory response precedes Purkinje cell loss in the cerebellum of SCA6 knockin mouse models
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease caused by an expansion of a CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Pathologically, it is characterized by selective degeneration of cerebellar Purkinje cells (PCs), which are a common target for PolyQ-induced toxicity among several different SCAs. Mutant Cav2.1 confers toxicity mainly through a toxic gain-of-function mechanism, but subcellular site of expanded Cav2.1 toxicity is controversial and it remains elusive whether SCA6 shares pathogenic cascades with other SCAs. To gain insight into these problems, we studied the cerebellar gene expression patterns of young Sca6 MPI 118Q/118Q knockin (KI) mice, which express mutant Cav2.1 from endogenous locus and faithfully models human SCA6. Comparison of transcriptional changes with those of Sca1 154Q/2Q mice, a faithful KI mouse model of SCA1, revealed that transcriptional signatures in the MPI 118Q/118Q were distinct from those of Sca1 154Q/2Q. Examination of temporal profiles of candidate genes showed that upregulation of those associated with microglial activation was initiated before PC degeneration was apparent and augmented as the disease progressed. Histological analysis of the MPI 118Q/118Q cerebellum confirmed the presence of Iba-1 positive activated microglia. Moreover, predominance of M1-like pro-inflammatory microglia was observed and was concomitant with the increased expression of pro-inflammatory cytokines. These results suggest that the unique transcriptional response, which highlights upregulation of neuroinflammatory genes possibly associated with lysosomal involvement, may play a pivotal role in the pathogenesis. Modulation of innate immune system could pave the way for slowing the progression of SCA6.

Publication Title

Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84968
Histone H2A T120 phophorylation promotes oncogenic transformation via upregulation of cyclin D1y
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE84962
Genome-wide analysis of gene expression regulated by VRK1 kinase in cancer cell lines [Illumina]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Histone H2A T120 phosphorylation promotes oncogenic transformation via upregulation of cyclin D1

Publication Title

Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27913
Overexpression of NUCKS1 in colorectal cancer correlates with recurrence after curative surgery
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21510
Clinical Significance of Osteoprotegerin Expression in Human Colorectal Cancer
  • organism-icon Homo sapiens
  • sample-icon 146 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: This study aimed to identify a novel biomarker or a target of treatment for colorectal cancer (CRC).

Publication Title

Clinical significance of osteoprotegerin expression in human colorectal cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27854
Overexpression of NUCKS1 in colorectal cancer correlates with recurrence after curative surgery (gene expression analysis)
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: The purpose of this study is to identify a novel biomarker related with distant metastases of colorectal cancer (CRC).

Publication Title

Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18105
Stage II and stage III colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Distant metastasis is the major causes of death in colorectal cancer (CRC) patients. In order to identify genes influencing the prognosis of patients with CRC, we compared gene expression in primary tumors with and without distant metastasis using an oligonucleotide microarray. We also examined the expression of the candidate gene in 100 CRC patients by quantitative real-time reverse transcription PCR and studied the relationship between its expression and the prognosis of patients with CRC. As a result, we identified MUC12 as a candidate gene involved in metastasis processes by microarray analysis. Quantitative real-time reverse transcription PCR showed that MUC12 expression was significantly lower in cancer tissues than in adjacent normal tissues (P < 0.001). In stage II and stage III CRC, patients with low expression showed worse disease-free survival (P = 0.038). Multivariate analysis disclosed that MUC12 expression status was an independent prognostic factor in stage II and stage III CRC (relative risk, 9.532; 95% confidence interval, 2.303-41.905; P = 0.002). This study revealed the prognostic value of MUC12 expression in CRC patients. Moreover, our result suggests MUC12 expression is a possible candidate gene for assessing postoperative adjuvant therapy for CRC patients.

Publication Title

MUC12 mRNA expression is an independent marker of prognosis in stage II and stage III colorectal cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52915
PARVB overexpression increases migration capability and defines high risks for endophytic growth and metastasis in tongue squamous cell carcinoma.
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tongue squamous cell carcinoma (TSCC) varies in characteristics even in early stages and is mainly classified into three subtypes, which are superficial, exophytic and endophytic types, based on a macroscopic appearance of tumor growth.Of these subtypes, endophytic tumor has a poorer prognosis because of its invasive feature and higher frequency to have metastasis. To understand a molecular mechanism of endophytic subtype and identify biomarkers, we performed comprehensive microarray analysis for mRNAs from clinical biopsy sampleswhich were classified into subtypes and found overexpression of parvin-beta (PARVB) gene significantly related to endophytic type. PARVB is known to play a critical role in actin reorganization and focal adhesions. Knocking down PARVB expression in vitrocaused apparent decreases in cell migration and wound healing, implying that PARVB has a crucial role in cellular motility. Moreover, metastasis-free survival was significantly lowered in patients with higher PARVB expression. Therefore overexpression of PARVB is a candidate biomarker for endophytic tumor and metastasis and may be clinically applicable for decision making of an adjuvant therapy in TSCC.

Publication Title

PARVB overexpression increases cell migration capability and defines high risk for endophytic growth and metastasis in tongue squamous cell carcinoma.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26933
Effects of polyglutamine expansion and subcellular localization of C-terminal fragment of Cav2.1 in PC12 rat pheochromocytoma cells
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Polyglutamine(polyQ) expansion of 1A voltage-dependent calcium channel (Cav2.1) is the causative mutation of spinocerebellar ataxia type 6 (SCA6). The C-terminal fragment (CTF) of Cav2.1 makes aggregates in the cytoplasm of SCA6 Purkinje cells and may relate to the pathogenesis. In order to identify genes associated with polyQ expansion and subcellular localization of CTF, we analyzed gene expression profiles of PC12 rat pheochromocytoma cells using Tet-off system.

Publication Title

Cytoplasmic location of α1A voltage-gated calcium channel C-terminal fragment (Cav2.1-CTF) aggregate is sufficient to cause cell death.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32323
Screening for Epigenetically Masked Genes in Colorectal Cancer using 5-aza-2-deoxycytidine treatment, Microarray and Gene Expression Profile
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Unearthing of silenced genes in colorectal cancer (CRC) is of great importance. We employed oligonucleotide microarray to find changes in global gene expression of five CRC cell lines. These were analyzed before and after treatment with the 5-aza-2'-Deoxycitidine. Expression of the responding genes was integrated with gene expression profiling generated by microarray analysis of matched colorectal tissue samples. Selected candidates were subjected to methylation-specific PCR (MSP) and real-time quantitative reverse transcription-PCR using CRC cell lines and paired tumor and normal samples from CRC patients. Sixty eight genes were re-expressed after 5-aza-2'-Deoxycitidine treatment and over-expressed in normal colorectal mucosa, including genes that were known to be methylated in CRC. After applying study selection criteria, we identified 16 potential genes. Two candidates were selected (ASPP1 and SCARA5). Among 15 CRC cell lines, methylation was identified in SCARA5 (20%). The methylation status of SCARA5 was subsequently investigated in 23 paired colorectal tissue samples; methylation was detected in 17%, respectively. Observed promoter methylation showed a tendency towards methylation in tumor-derived samples, in SCARA5 gene. Significant down expression of SCARA5 mRNA was observed in CRC cell lines and tumor tissues compared to adjacent normal tissues (P < 0.001 and P = 0.001, respectively). The use of genome-wide screening led to the identification of a group of candidate genes. Among them, SCARA5 was methylated and markedly down-regulated in CRC. SCARA5 gene may have a role in CRC tumorigenesis.

Publication Title

Screening for epigenetically masked genes in colorectal cancer Using 5-Aza-2'-deoxycytidine, microarray and gene expression profile.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact