refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 64 results
Sort by

Filters

Technology

Platform

accession-icon GSE114466
Transcriptional profile from peripheral blood in patients infected with avian influenza H7N9 virus
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Avian influenza A (H7N9) viruses have emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profile from peripheral blood has been shown to reflect host responses against a specific respiratory pathogen and can be used to understand the disease. Methods: We correlated the clinical data and blood transcriptomic profile of patients with avian influenza A (H7N9) disease and determined the biological significance of the infection from the analysis.

Publication Title

Clinical Correlations of Transcriptional Profile in Patients Infected With Avian Influenza H7N9 Virus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67458
The MEF2B Regulatory Network
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE67417
The MEF2B Regulatory Network - Expression microarray data
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Myocyte enhancer factor 2B (MEF2B) is a transcription factor with somatic mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). The recurrence of these mutations indicates that they may drive lymphoma development. However, inferring the mechanisms by which they may drive lymphoma development was complicated by our limited understanding of MEF2Bs normal functions. To expand our understanding of the cellular activities of wildtype (WT) and mutant MEF2B, I developed and addressed two hypotheses: (1) identifying genes regulated by WT MEF2B will allow identification of cellular phenotypes affected by MEF2B activity and (2) contrasting the DNA binding sites, effects on gene expression and effects on cellular phenotypes of mutant and WT MEF2B will help refine hypotheses about how MEF2B mutations may contribute to lymphoma development. To address these hypotheses, I first identified genome-wide WT MEF2B binding sites and transcriptome-wide gene expression changes mediated by WT MEF2B. Using these data I identified and validated novel MEF2B target genes. I found that target genes of MEF2B included the cancer genes MYC, TGFB1, CARD11, NDRG1, RHOB, BCL2 and JUN. Identification of target genes led to findings that WT MEF2B promotes expression of mesenchymal markers, promotes HEK293A cell migration, and inhibits DLBCL cell chemotaxis. I then investigated how K4E, Y69H and D83V mutations change MEF2Bs activity. I found that K4E, Y69H and D83V mutations decreased MEF2B DNA binding and decreased MEF2Bs capacity to promote gene expression in both HEK293A and DLBCL cells. These mutations also reduced MEF2Bs capacity to alter HEK293A and DLBCL cell movement. From these data, I hypothesize that MEF2B mutations may promote DLBCL and FL development by reducing expression of MEF2B target genes that would otherwise function to help confine germinal centre B-cells to germinal centres. Overall, my research demonstrates how observations from genome-scale data can be used to identify cellular effects of candidate driver mutations. Moreover, my work provides a unique resource for exploring the role of MEF2B in cell biology: I map for the first time the MEF2B regulome, demonstrating connections between a relatively understudied transcription factor and genes significant to oncogenesis.

Publication Title

MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP056742
The MEF2B Regulatory Network - RNA-seq data
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Myocyte enhancer factor 2B (MEF2B) is a transcription factor with somatic mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). The recurrence of these mutations indicates that they may drive lymphoma development. However, inferring the mechanisms by which they may drive lymphoma development was complicated by our limited understanding of MEF2B’s normal functions. To expand our understanding of the cellular activities of wildtype (WT) and mutant MEF2B, I developed and addressed two hypotheses: (1) identifying genes regulated by WT MEF2B will allow identification of cellular phenotypes affected by MEF2B activity and (2) contrasting the DNA binding sites, effects on gene expression and effects on cellular phenotypes of mutant and WT MEF2B will help refine hypotheses about how MEF2B mutations may contribute to lymphoma development. To address these hypotheses, I first identified genome-wide WT MEF2B binding sites and transcriptome-wide gene expression changes mediated by WT MEF2B. Using these data I identified and validated novel MEF2B target genes. I found that target genes of MEF2B included the cancer genes MYC, TGFB1, CARD11, NDRG1, RHOB, BCL2 and JUN. Identification of target genes led to findings that WT MEF2B promotes expression of mesenchymal markers, promotes HEK293A cell migration, and inhibits DLBCL cell chemotaxis. I then investigated how K4E, Y69H and D83V mutations change MEF2B’s activity. I found that K4E, Y69H and D83V mutations decreased MEF2B DNA binding and decreased MEF2B’s capacity to promote gene expression in both HEK293A and DLBCL cells. These mutations also reduced MEF2B’s capacity to alter HEK293A and DLBCL cell movement. From these data, I hypothesize that MEF2B mutations may promote DLBCL and FL development by reducing expression of MEF2B target genes that would otherwise function to help confine germinal centre B-cells to germinal centres. Overall, my research demonstrates how observations from genome-scale data can be used to identify cellular effects of candidate driver mutations. Moreover, my work provides a unique resource for exploring the role of MEF2B in cell biology: I map for the first time the MEF2B ‘regulome’, demonstrating connections between a relatively understudied transcription factor and genes significant to oncogenesis. Overall design: RNA-seq was performed on cells expressing V5 tagged WT or mutant MEF2B and on empty vector control cells. One biological replicates was performed on cell treated with either ionomycin or a solvent-only control.

Publication Title

MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE96866
Gene expression and DNA methylation profiling for HEK-293T cells transfected with GFP and DME
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DEMETER plant DNA demethylase induces antiviral response by interferon signalling in animal cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE96863
Gene expression data for HEK-293T cells transfected with GFP control and plant derived DNA demethylase DME
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression profiles of human embryonic kidney (HEK)-293T cells expressing a GFP (293T-GFP) or a truncated form of Arabidopsis DEMETER (DME) 5-methylcytosine (5mC) DNA glycosylase (293T-DME) analyzed on an Affymetrix Human Genome U133 Plus 2.0 Array Platform. These array data revealed differentially expressed genes (DEGs) between the 293T-GFP cells (without direct 5mC excision activity) and 293T-DME cells (with artificially implemented direct 5mC excision activity).

Publication Title

DEMETER plant DNA demethylase induces antiviral response by interferon signalling in animal cells.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE22117
Expression data from MRTFA-B double knockout brain
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarrays to detail the global pattern of gene expression in the cortical regional of MRTF-A/-B double knockout mice at Postnatal day 0 (P0).

Publication Title

Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38177
Controlling Reoxygenation During Cardiopulmonary Bypass is Associated with Reduced Transcriptomic Changes in Cyanotic Patients with Tetralogy of Fallot Undergoing Heart Surgery
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38162
Transcription profile in patients with cyanotic Tetralogy of Fallot undergoing corrective surgery using controlled reoxygenation cardiopulmonary bypass
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine cardiac transcription profile in cyanotic Tetralogy of Fallot patients subjected to conrolled reoxygenation cardiopulmonary bypass, we collected myocardial samples at the end of the ischemic time. The transcriptional profile of the mRNA in these samples was measured with gene array technology

Publication Title

Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38161
Transcription profile in patients with cyanotic Tetralogy of Fallot undergoing corrective surgery using hyperoxic/standard cardiopulmonary bypass
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine cardiac transcription profile in cyanotic Tetralogy of Fallot patients subjected to hyperoxic/standard cardiopulmonary bypass, we collected myocardial samples at the end of the ischemic time. The transcriptional profile of the mRNA in these samples was measured with gene array technology

Publication Title

Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact