refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1316 results
Sort by

Filters

Technology

Platform

accession-icon GSE76811
Identification of MMP12 as a potential new target for prevention and treatment of cardiometabolic disease
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Obesity is strongly associated with the metabolic syndrome, a compilation of risk factors that predispose individuals to the development of cardiometabolic disease (CMD), i.e. cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Controlling or preventing the worldwide epidemic of metabolic syndrome requires novel interventions to address this substantial health challenge. The objective of this study was the identification of potential new targets for the simultaneous prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie T2DM and CVD, respectively. Therefore, we used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining data from two microarray experiments and two meta-analyses. In the microarray experiments we compared gene expression in white adipose tissue (WAT) of obese mice as well as aortae of obese and atherosclerotic mice to respective lean controls. Furthermore, we performed a meta-analysis of published microarrays investigating atherosclerotic vessels and included a published meta-analysis on T2DM into our analyses. We obtained a pool of thirty-four genes that were upregulated in 3 out of the 4 underlying databases. These included well-known as well as novel crucial molecules for treatment of T2DM and CVD. Macrophage metalloelastase 12 (MMP12) was found highly ranked in all analyses and, therefore, chosen for further validation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and, of note, activity levels. In conclusion, by this unbiased approach an interesting pool of potential molecular targets or biomarkers for treatment and prevention of CMD was identified with MMP12 being confirmed on multiple levels.

Publication Title

Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9484
Effect of the HF diet and Akt1-mediated muscle growth on gene expression in liver tissue.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In contrast to the well-established role of oxidative muscle fibers in regulating fatty acid oxidation and whole body metabolism, little is known that about the function of fast/glycolytic muscle fibers in these processes. Here, we generated a skeletal muscle-specific, conditional transgenic mouse expressing a constitutively-active form of Akt1. Transgene activation led to muscle hypertrophy due to the growth of type IIb muscle fibers, which was accompanied by an increase in strength. These mice were then used to assess the consequence of building fast/glycolytic muscle fibers on adiposity and metabolism. Akt1 transgene induction in obese mice resulted in reductions in body weight and fat mass, a resolution of hepatic steatosis and improved metabolic parameters. These effects were achieved independent of changes in physical activity and levels of food consumption. Akt1-mediated skeletal muscle growth opposed the effects of high fat/sucrose diet on transcript expression patterns in the liver, and increased hepatic fatty acid oxidation and ketone body production. Our findings indicate that an increase in fast/glycolytic muscle mass can result in the regression of obesity and obesity-related metabolic disorders in part through its ability to alter fatty acid metabolism in remote tissues.

Publication Title

Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP102003
The Stability of the Transcriptome during the Estrous Cycle in Four Regions of the Mouse Brain
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ~1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related. Overall design: Hypothalamus, hippocampus, neocortex, and cerebellum mRNA from adult female C57BL/6J (B6) mice were analyzed by RNA sequencing of 3 biological replicates for each of the 4 stages of the estrous cycle using an Illumina HiSeq 2500

Publication Title

The stability of the transcriptome during the estrous cycle in four regions of the mouse brain.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP077669
Sex differences in the molecular signature of the developing mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we measured both mRNA and protein in the hippocampus of female and male mice at 1, 2, and 4 months of age with RNA-sequencing and mass-spectrometry respectively. Differential expression analyses identify 2699 genes that are differentially expressed between animals of different ages. 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation across all ages, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53). This study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus. Overall design: Hippocampal mRNA from 1, 2, and 4 month old male and female B6 mice were analyzed by RNA sequencing of 5 biological replicates using an Illumina HiSeq 2500

Publication Title

Sex differences in the molecular signature of the developing mouse hippocampus.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP102581
Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Numerous neurological disorders, including Alzheimer's disease, display a sex-biased prevalence. To identify molecular correlates of this sex bias, we investigated sex-differences in molecular pathology in the hippocampus using the 5XFAD mouse model of Alzheimer's disease during early stages of disease progression (1, 2, and 4 months of age). Overall design: Hippocampal mRNA from 1, 2, and 4 month old male and female 5XFAD mice were analyzed by RNA sequencing of 5 biological replicates using an Illumina HiSeq 2500

Publication Title

Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP068123
Transcriptomic Analysis of the Hippocampus from Six Inbred Strains of Mice Suggests Basis for Sex-Specific Susceptibility and Severity of Neurological Disorders
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Identifying sex differences in gene expression within the brain is critical for determining why multiple neurological and behavioral disorders differentially affect males and females. Several are more common or severe in males (e.g., autism and schizophrenia) or females (e.g., Alzheimer’s disease and depression). We analyzed transcriptomic data from the mouse hippocampus of six inbred strains (129S1/SvImJ, A/J, C57BL/6J, DBA/1J, DBA/2J and PWD/Ph), to provide a perspective on differences between male and female gene expression. Our data show that: 1) significant gene expression differences in males versus females varies substantially across the strains, 2) 12 genes exist that are differentially expressed across the inbred strains (termed core genes), and 3) there are >2,600 significantly differentially expressed genes (DEGs) among the strains (termed non-core genes). We found that DBA/2J uniquely has a substantial majority (89%) of DEGs that are more highly expressed in females than males; 129/SvImJ is the most strongly male-biased with a majority (69%) of DEGs that are more highly expressed in males. To gain insight into the sex-biased DEGs, we examined gene ontology, pathway and phenotype enrichment and found significant enrichment in phenotypes related to abnormal nervous system morphology and physiology, among others. In addition, several pathways are enriched significantly, including Alzheimer’s disease (AD), with 32 genes implicated in AD, 8 of which are male-biased. Three of the male-biased genes have been implicated in a neuroprotective role in AD. Our transcriptomic data provide new insight into understanding the possible genetic bases for sex-specific susceptibility and severity of brain disorders. Overall design: Hippocampal mRNA from adult males and females of six inbred strains of mice were analyzed by RNA sequencing of 3 biological replicates using an Illumina HiSeq 2500

Publication Title

Transcriptomic analysis of the hippocampus from six inbred strains of mice suggests a basis for sex-specific susceptibility and severity of neurological disorders.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP060648
A comprehensive examination of dynamic gene expression changes in the mouse brain during pregnancy and the postpartum period
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The developmental transition to motherhood requires gene expression changes that alter the brain to prepare and drive the female to perform maternal behaviors. Furthermore, it is expected that the many physiological changes accompanying pregnancy and postpartum stages will impact brain gene expression patterns. To understand how extensive these gene expression changes are, we examined the global transcriptional response broadly, by examining four different brain regions: hypothalamus, hippocampus, neocortex, and cerebellum. Further, to understand the time course of these changes we performed RNA-sequencing analyses on mRNA derived from virgin females, two pregnancy time points and three postpartum time points. We find that each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions, across the time points. Additionally, several genes previously implicated in underlying postpartum depression change expression. This study serves as a comprehensive atlas of gene expression changes in the maternal brain in the cerebellum, hippocampus, hypothalamus, and neocortex. At each of the time points analyzed, all four brain regions show extensive changes, suggesting that pregnancy, parturition, and postpartum maternal experience substantially impacts diverse brain regions. Overall design: Libraries were prepared from three independent biological replicates, mRNA for each biological replicate was derived from a single mouse brain, with each mouse brain being used to collect all four brain regions.

Publication Title

An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21535
Effect of lactation on transcriptomic expression in bovine adipose tissue
  • organism-icon Bos taurus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The objective was to study the transcriptomic changes in adipose tissue in the early stages of lactation, specifically in Bos Taurus, Holstein dairy cattle as a function of milk production and genetic merit.

Publication Title

Differential expression of genes in adipose tissue of first-lactation dairy cattle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53126
Gene expression data from yeast exposure to pyrimethanil
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Pyrimethanil (PYR) is a world-wide used fungicide approved for use in plant protection products in Agriculture, and with some (eco)toxicological concerns.We aimed at finding molecular biomarkers in the model yeast Saccharomyces cerevisiae that may be used to predict potential cytotoxic effects of this xenobiotic while providing mechanistic clues possibly relevant for experimentally less accessible non-target eukaryotes.

Publication Title

Potential mechanisms underlying response to effects of the fungicide pyrimethanil from gene expression profiling in Saccharomyces cerevisiae.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE53125
Gene expression data from yeast exposure to equitoxic doses of six different pesticides
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This study focus a comparative toxicogenomic analysis of the effects of four herbicides (alachlor, ALA, S-metolachlor, S-MET, diuron, DIU, and MCPA-methyl ester, MCPA-ME), one insecticide (carbofuran, CAB), and one fungicide (pyrimethanil, PYR), in the model yeast Saccharomyces cerevisiae, to predict potential cytotoxic effects of these xenobiotics while providing mechanistic clues possibly relevant for experimentally less accessible non-target eukaryotes. The six model pesticides selected have been used worldwide in agricultural activities, at the present time or in the past, and have different modes of action on their target-organisms. Moreover, some of them are currently in Annex 1 of EC Directive 1107/2009 (repealing 91/414), that is they are in use in the EU, but having some ecotoxicological concerns (e.g. S-MET, PYR, MCPA-ME), others have their use restricted and/or are priority substances under the Water Framework Directive (e.g. ALA, DIU), and one was banned (e.g. CAB).

Publication Title

Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact