refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1251 results
Sort by

Filters

Technology

Platform

accession-icon GSE69517
Expression in E. coli of hyper- and hypo-amyloidogenic RepA-WH1 variants
  • organism-icon Escherichia coli k-12
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

RepA-WH1 is a synthetic bacterial prionoid, i.e., a protein that aggregates as amyloid in bacteria leading to cell death

Publication Title

Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid.

Sample Metadata Fields

Disease, Time

View Samples
accession-icon GSE56615
Expression data from human breast cancer cells MDA-MB-231-Luc knockdown for RRAS2 expression.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to investigate gene expression changes induced by the inhibition of RRAS2 expression using shRNA techniques to stably knockdown the endogenous transcripts of this GTPase in human MDA-MB-231-Luc cells.

Publication Title

Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE89411
Tyrosine Kinase Inhibitor Cardiotoxicity
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE89410
High-Throughput Screening of Tyrosine Kinase Inhibitor Cardiotoxicity using Human Induced Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Tyrosine kinase inhibitors (TKIs), despite efficacy as anti-cancer therapies, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We have utilized patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen FDA-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a cardiac safety index to assess cardiotoxicities of existing TKIs. Many TKIs with a low cardiac safety index exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that VEGFR2/PDGFR-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. Using phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Activating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during co-treatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anti-cancer TKIs, correlating with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.

Publication Title

High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE20368
1q gain clinical impact in Ewing's Sarcoma: role of DTL
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Cell line

View Samples
accession-icon GSE20357
Expression data from DTL silenced-Ewing Sarcoma's cell lines along with their controls
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The 1q gain is related to poor survival, and to a profile of cell cycle deregulation in Ewing's Sarcoma (ES). Tumor samples with 1q gain overexpress the gene DTL.

Publication Title

1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE53378
Adipose transcriptome and microRNA profiles after surgery-induced weight loss
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Multispecies miRNA-3 Array (mirna3), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE53376
Adipose transcriptome and microRNA profiles after surgery-induced weight loss [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

Molecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE21611
Oscillating gene expression determines competence for periodic branching in the Arabidopsis root
  • organism-icon Arabidopsis thaliana
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Oscillation Zone (OZ) of unsynchronized roots was disected and divided into an upper (OZ2) and lower (OZ1) half .

Publication Title

Oscillating gene expression determines competence for periodic Arabidopsis root branching.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP181957
Molecular basis of neuronal subtype bias introduced by proneural factors Ascl1 and Neurog2 (single-cell RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Basic helix-loop-helix (bHLH) proneural transcription factors (TFs) Ascl1 and Neurog2 are integral to the development of the nervous system. Here, we investigated the molecular mechanisms by which Ascl1 and Neurog2 control the acquisition of generic neuronal fate and impose neuronal subtype identity. Using direct neuronal programming of embryonic stem cells, we found that Ascl1 and Neurog2 regulate distinct targets by binding to largely different sets of sites. Their divergent binding pattern is not determined by the previous chromatin state but distinguished by specific E-box enrichments which reflect the DNA sequence preference of the bHLH domain. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity landscapes that shape the binding and activity of downstream TFs during neuronal specification. Our findings suggest that proneural factors contribute to neuronal diversity by differentially altering the chromatin landscapes that shape the binding of neuronally expressed TFs. Overall design: Single-cell RNA-seq was used to characterize gene expression in mixed populations of mES cells containing induced expression of either Ascl1 or Neurog2.

Publication Title

Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact