refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1247 results
Sort by

Filters

Technology

Platform

accession-icon GSE53378
Adipose transcriptome and microRNA profiles after surgery-induced weight loss
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Multispecies miRNA-3 Array (mirna3), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE53376
Adipose transcriptome and microRNA profiles after surgery-induced weight loss [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

Molecular mechanisms associated with pathophysiological variations in adipose tissue (AT) are not fully recognized. The main aim of this study was to identify novel candidate genes and miRNAs that may contribute to the pathophysiology of hyperplastic AT. Therefore, wide gene and microRNA (miRNA) expression patterns were assessed in subcutaneous AT of 16 morbidly obese women before and after surgery-induced weight loss. Validation of microarray data was performed by quantitative real-time PCR both longitudinally (n=25 paired samples) and cross-sectionally (25 obese vs. 26 age-matched lean women). Analyses in macrophages and differentiated human adipocytes were also performed to try to comprehend the associations found in AT. 5,018 different probe sets identified significant variations in gene expression after treatment (adjusted p-value<0.05). A set of 16 miRNAs also showed significant modifications. Functional analysis revealed changes in genes and miRNAs associated with cell cycle, development and proliferation, lipid metabolism, and the inflammatory response. Canonical affected pathways included TREM1, PI3K, and EIF2 signaling, hepatic stellate cell activation, and mitochondrial function. Increased expression of SLC27A2, ELOVL6, FASN, GYS2, LGALS12, PKP2, ACLY, and miR-575, as well as decreased FOS, EGFL6, PRG4, AQP9, DUSP1, RGS1, EGR1, SPP1, LYZ, miR-130b, miR-221, and miR-155, were further validated. The clustering of similar expression patterns for gene products with related functions revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes after the surgery-induced weight loss.

Publication Title

Surgery-Induced Weight Loss Is Associated With the Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE21611
Oscillating gene expression determines competence for periodic branching in the Arabidopsis root
  • organism-icon Arabidopsis thaliana
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Oscillation Zone (OZ) of unsynchronized roots was disected and divided into an upper (OZ2) and lower (OZ1) half .

Publication Title

Oscillating gene expression determines competence for periodic Arabidopsis root branching.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26717
Microarray analysis of R7 and R8 targeting
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The formation of neuronal connections requires the precise guidance of developing axons towards their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R-cells each. R cells fall into three classes, R1-R6, R7 and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known.

Publication Title

Robo-3--mediated repulsive interactions guide R8 axons during Drosophila visual system development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP028611
Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

During each life cycle germ cells preserve and pass on both genetic and epigenetic information. In C. elegans, the ALG-3/4 Argonaute (AGO) proteins and their small-RNA cofactors are expressed during male gametogenesis and promote male fertility. Here we show that the CSR-1 AGO functions with ALG-3/4 to positively regulate target genes required for spermiogenesis. Our findings suggest that ALG-3/4 functions during spermatogenesis to amplify a small-RNA signal that represents an epigenetic memory of male-specific gene expression, while CSR-1, which is abundant in mature sperm, transmits this memory to offspring. Surprisingly, in addition to small RNAs targeting male-specific genes, we show that males also harbor an extensive repertoire of CSR-1 small RNAs targeting oogenesis-specific mRNAs. Together these findings suggest that C. elegans sperm transmit not only the genome but also epigenetic binary signals in the form of Argonaute/small-RNA complexes that constitute a memory of which genes were active in preceding generations. Overall design: Examine small RNA changes in WT and alg-3/4 mutant males cultured at 20°C and 25°C, as well as determine the small RNAs enriched in a FLAG::CSR-1 IP from male worms grown at 25°C. mRNA sequencing was also performed to determine how transcripts targeted by small RNAs change in mutant background at 20°C and 25°C.

Publication Title

Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE44951
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP061037
Spontaneous single-copy loss of TP53 in human embryonic stem cells markedly increases cell proliferation and survival [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The potential safety issues related to the acquisition of common genomic aberrations in hPSC cultures are well-recognized, but these risks have not been evaluated for sporadic mutations. Here, we explore whether a sporadic mutation that spontaneously arose in a hESC culture consisting of a single-copy deletion of chr17p13.1 would confer a survival advantage to the mutant cells. Compared to wild-type cells with two normal copies of the chr17p13.1 region, the mutant cells displayed a selective advantage when exposed to stressful conditions, and retained a higher percentage of pluripotent cells after two weeks of in vitro differentiation. Knockdown of TP53, which is a gene encompassed by the deleted region, in wild-type cells mimicked the chr17p13.1 deletion phenotype. RNA sequencing analysis showed differential expression of genes in pathways related to proliferation and differentiation. Thus, phenotypic implications of sporadic mutations must be taken into consideration before using the hPSC for clinical applications. Overall design: Triplicate cDNA libraries of two mutant WA09 lines with a single-copy deletion of chr17p13.1, and two wild-type WA09 lines, for a total of 12 libraries were sequenced using Illumina HiSeq 2500. The sequence reads were mapped to hg19 reference genome and hits that passed quality filters were analyzed for differential expression.

Publication Title

Spontaneous Single-Copy Loss of TP53 in Human Embryonic Stem Cells Markedly Increases Cell Proliferation and Survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44949
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments [HEK293DAX]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44950
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments [HEK293DYG]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE31968
Jarid1b targets genes regulating development and is involved in neural differentiation
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Illumina Genome Analyzer

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Jarid1b targets genes regulating development and is involved in neural differentiation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact