refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1247 results
Sort by

Filters

Technology

Platform

accession-icon GSE48459
Sarcoptes scabiei Mites Modulate Gene Expression In Human Skin Equivalents
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.

Publication Title

Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE5404
Expression data from Drosophila subjected to artificial selection on aggression
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genes relevant to manifestion of and variation in aggression behavior might be differentially expressed in lines selected for divergent levels of aggression.

Publication Title

Quantitative genomics of aggressive behavior in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58727
Expression data from E18 mouse dorsal telencephalon
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neurons deficient in both GSK-3 alpha and beta isoforms fail to migrate properly and develop abnormal morphology. In exploring mechanisms, we found no change in Wnt transcriptional target genes.

Publication Title

GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34667
Expression data from ozone-treated wild-type and G-protein null mutant Arabidopsis lines
  • organism-icon Arabidopsis thaliana
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Ozone pollution decreases plant growth and yield worldwide. Some of the effects are genetically-mediated and are reported to involve G-protein signaling pathways. Effects of ozone on gene expression were examined in wild-type and G-protein null mutants to determine affected genes and to determine differential responses that may help define affected pathways.

Publication Title

Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE16759
mRNA and miRNA expression in parietal lobe cortex in Alzheimer's disease
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we jointly profiled mRNA and miRNA expression to determine the role of miRNAs in AD, and whether the levels of miRNAs are related to those of target mRNAs. We found a bias towards positive correlation between levels of miRNAs and those of their targets.

Publication Title

Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE55968
Transcriptome of Irradiated Microglia
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury, and here we present a comprehensive transcriptional profile of irradiated microglia.

Publication Title

Aging-like changes in the transcriptome of irradiated microglia.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10598
Transcriptional profile of rapidly stimulated atrial myocytes: Conservation with human atrial fibrillation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Atrial fibrillation (AF) is a progressive arrhythmia for which current therapy is inadequate. During AF, rapid stimulation causes atrial remodeling that promotes further AF. The cellular signals that trigger this process remain poorly understood, however, and elucidation of these factors would likely identify new therapeutic targets. We have previously shown that immortalized mouse atrial (HL-1) myocytes subjected to 24 hr of rapid stimulation in culture undergo remodeling similar to that seen in animal models of atrial tachycardia (AT) and human AF. This preparation is devoid of confounding in vivo variables that can modulate gene expression (e.g., hemodynamics). Therefore, we investigated the transcriptional profile associated with early atrial cell remodeling. RNA was harvested from HL-1 cells cultured for 24 hr in the absence and presence of rapid stimulation and subjected to microarray analysis. Data were normalized using Robust Multichip Analysis (RMA), and genes exhibiting significant differential expression were identified using the Significance Analysis of Microarrays (SAM) method. Using this approach, 919 genes were identified that were significantly altered with rapid stimulation (763 up-regulated and 156 down-regulated). For many individual transcripts, changes typical of AF/AT were observed, with marked up-regulation of genes encoding BNP and ANP precursors, heat shock proteins, and MAP kinases, while novel signaling pathways and molecules were also identified. Both stress and survival response were evident, as well as up-regulation of multiple transcription factors. Genes were also functionally classified based on cellular component, biologic process, and molecular function using the Gene Ontology database to permit direct comparison of our data with other gene sets regulated in human AF and experimental AT. For broad categories of genes grouped by functional classification, there was striking conservation between rapidly stimulated HL-1 cells and AF/AT. Results were confirmed using real-time quantitative RT-PCR on 13 genes selected by physiological relevance in AF/AT and regulation in the microarray analysis (up, down, and nonregulated). Rapidly-stimulated atrial myocytes provide a complementary experimental paradigm to explore the initial cellular signals in AT remodeling to identify novel targets in the treatment of AF.

Publication Title

Transcriptional remodeling of rapidly stimulated HL-1 atrial myocytes exhibits concordance with human atrial fibrillation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40675
Expression data from E18.5 mouse dorsal telencephalon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found the Ets transcription family member Etv5/Erm is strongly regulated by MEK. Our microarray assay showed that Erm is specifically downregulated in Mek mutant brain.

Publication Title

MEK Is a Key Regulator of Gliogenesis in the Developing Brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26682
MRE11 Deficiency Increases Sensitivity to Poly(ADP-ribose) Polymerase Inhibition in Microsatellite Unstable Colorectal Cancers.
  • organism-icon Homo sapiens
  • sample-icon 331 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We have performed bioinformatic approaches to identify the level of enrichment between gene expression profiles characterizing MSI tumors and gene changes induced in vitro by the PARP-1 inhibitor Phenanthridinone and others using the Connectivity Map tool. In a first step, we have anyzed the expression of 300 colorectal cancers from the MECC study and generated a gene expression signature by microsatellite status. The criteria followed for selection of probe sets and detailed lists to be submitted subsequently to the Connectivity Map have been published previously by us in Clinical Cancer Research in 2009. In a second step, once we observed that deficiency in MRE11 exist among MSI tumors, our interest was focused on assessing if the homologous recombination pathway showed evidence of deregulation in MSI tumors. Therefore, we examined the expression levels of those genes integrated in the KEGG pathway hsa03440 using the previously generated gene expression data set.

Publication Title

MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE20854
EGFR Isoforms and Gene Regulation in Human Endometrial Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to analyze differential gene expression and to help determine the efficacy of Iressa (gefitinib), a tyrosine kinase inhibitor, on endometrial cancer cells.

Publication Title

EGFR isoforms and gene regulation in human endometrial cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact