refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1247 results
Sort by

Filters

Technology

Platform

accession-icon GSE7614
Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Alcoholism is a complex disorder determined by interactions between genetic and environmental risk factors. Drosophila represents a powerful model system to dissect the genetic architecture of alcohol sensitivity, as large numbers of flies can readily be reared in defined genetic backgrounds and under controlled environmental conditions. Furthermore, flies exposed to ethanol undergo physiological and behavioral changes that resemble human alcohol intoxication, including loss of postural control, sedation, and development of tolerance.

Publication Title

Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18690
SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Global expression analysis of neural crest-like skin-derived precursors (SKPs) and Sox2-positive follicle dermal cells that SKPs originate from.

Publication Title

SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23954
CONVERGENT GENESIS OF AN ADULT NEURAL CREST-LIKE DERMAL STEM CELL FROM DISTINCT DEVELOPMENTAL ORIGINS
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Skin-derived precursors (SKPs) are multipotent dermal stem cells that reside within a hair follicle niche and that share properties with embryonic neural crest precursors. Here, we have asked whether SKPs and their endogenous dermal precursors originate from the neural crest or whether, like the dermis itself, they originate from multiple developmental origins. To do this, we used two different mouse Cre lines that allow us to perform lineage tracing: Wnt1-cre, which targets cells deriving from the neural crest, and Myf5-cre, which targets cells of a somite origin. By crossing these Cre lines to reporter mice, we show that the endogenous follicle-associated dermal precursors in the face derive from the neural crest, and those in the dorsal trunk derive from the somites, as do the SKPs they generate. In spite of these different developmental origins, SKPs from these two locations are functionally similar, even with regard to their ability to differentiate into Schwann cells, a cell type only thought to be generated from the neural crest. Analysis of global gene expression using microarrays confirmed that facial and dorsal SKPs exhibit a very high degree of similarity, and that they are also very similar to SKPs derived from ventral dermis, which has a lateral plate origin. However, these developmentally-distinct SKPs also retain differential expression of a small number of genes that reflect their developmental origins. Thus, an adult neural crest-like dermal precursor can be generated from a non-neural crest origin, a finding with broad implications for the many neuroendocrine cells in the body.

Publication Title

Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44616
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE44613
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors.

Publication Title

Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP018836
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Human LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3’UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors. Overall design: To assess whether miRNAs are regulated by LIN28B we analyzed the miRNA levels of LIN28B overexpressing and LIN28B-depleted cells using small RNA cDNA library sequencing. The RBP LIN28B was depleted by siRNAs and the expression levels was compared to mock-transfected HEK293 cells.

Publication Title

Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP018837
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition [PAR-CLIP]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

Human LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3’UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors. Overall design: LIN28 protein PAR-CLIP

Publication Title

Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP058819
Genome-wide profiling of nucleosome sensitivity and chromatin accessibility to MNase in D. melanogaster [RNA-seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Nucleosome structure and positioning play pivotal roles in gene regulation, DNA repair and other essential processes in eukaryotic cells. Nucleosomal DNA is thought to be uniformly inaccessible to DNA binding and processing factors, such as MNase. Here, we show, however, that nucleosome accessibility and sensitivity to MNase varies. Digestion of Drosophila chromatin with two distinct concentrations of MNase revealed two types of nucleosomes: sensitive and resistant. MNase-resistant nucleosome arrays are less accessible to low concentrations of MNase, whereas MNase-sensitive arrays are degraded by high concentrations. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C containing dinucleotides. In contrast, MNase-sensitive nucleosomes form on A/T rich sequences represented by transcription start and termination sites, enhancers and DNase hypersensitive sites. Lowering of cell growth temperature to ~10°C stabilizes MNase-sensitive nucleosomes suggesting that variations in sensitivity to MNase are related to either thermal fluctuations in chromatin fiber or the activity of enzymatic machinery. In the vicinity of active genes and DNase hypersensitive sites nucleosomes are organized into synchronous, periodic arrays. These patterns are likely to be caused by “phasing” nucleosomes off a potential barrier formed by DNA-bound factors and we provide an extensive biophysical framework to explain this effect. Overall design: RNA-seq S2 cells Drosophila melanogaster

Publication Title

Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30967
Genome wide transcriptional analysis of P. aeruginosa PAO1, response to phosphate limitation
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

P. aeruginosa PAO1 grown as lawns on Nematode Growth Medium prepared without supplementation (NGM Pi<0.1 mM) has high killing ability against C. elegans, however, no mortality in worms has been observed during 48 hrs when feeding on PAO1 lawns grown on phosphate supplemented full NGM Pi 25 mM, pH 6.0 medium.

Publication Title

Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033566
Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers [small RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 184 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000, IlluminaGenomeAnalyzerIIx

Description

Heart failure is associated with high morbidity and mortality and its incidence increases worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage heart failure before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small-RNA-sequencing. MiRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA–target-mRNA interactions, target mRNA levels were negatively correlated to changes in abundance for highly expressed miRNAs in heart failure and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced heart failure, which coincided with a similar increase in cardiac troponin I protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 months following initiation of LVAD support. In stable heart failure, circulating miRNAs showed less than 5-fold differences compared to normal, and myomir and cardiac troponin I levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers. Overall design: Total RNA isolated from human left ventricular myocardium of failing hearts due to dilated or ischemic cardiomyopathy before and after mechanical unloading by a left ventricular assist device, and fetal myocardium compared to non-failing postnatal myocardium was subjected to multiplexed small RNA-sequencing on the Illumina platform. mRNA gene expression data using Illumina HumanHT-12v4 beadarrays for a subset of the myocardial samples is available (GSE52601).

Publication Title

Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact