refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE54775
Effect of choline kinase inhibitor hexadecyltrimethylammonium bromide on Plasmodium falciparum gene expression
  • organism-icon Plasmodium falciparum
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Investigations on the fundamental of malaria parasite biology, such as invasion, growth cycle, metabolism and cell signalling have uncovered a number of potential antimalarial drug targets, including choline kinase, a key enzyme involved in the synthesis of phosphatidylcholine, an important component in parasite membrane compartment.

Publication Title

Effect of choline kinase inhibitor hexadecyltrimethylammonium bromide on Plasmodium falciparum gene expression.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP212738
The Toll signaling pathway targets the insulin-like peptide Dilp6 to inhibit growth in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To identify genes that mediate altered communication between fat body and peripheral tissues, we report the gene expression changes in Drosophila third instar larval fat bodies with or without constitutively-active Toll (Toll10b) to activate innate immune signaling, myristoylated Akt (myrAkt) to activate insulin signaling, or both transgenes to bypass the block from Toll signaling to the upstream part of the insulin signaling pathway Overall design: Comparison of RFP/GFP (Control), Toll10b/GFP (Toll10b), RFP/myrAkt (myrAkt), and Toll10b/myrAkt (Toll10b + myrAkt)

Publication Title

The Toll Signaling Pathway Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in Drosophila.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15852
Expression data from human breast tumors and their paired normal tissues
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Microarray is widely used to monitor gene expression changes in breast cancer. The transcriptomic changes in breast cancer is commonly occured during the transition of normal cells to cancerous cells. This is the first study on gene expression profiling of multi ethnic of Malaysian breast cancer patients (Malays, Chinese and Indian). We aim to identify differentially expressed genes between tumors and normal tissues. We have identified a set of 33 significant differentially expressed genes in the tumor vs. normal group at p<0.001.

Publication Title

Gene expression patterns distinguish breast carcinomas from normal breast tissues: the Malaysian context.

Sample Metadata Fields

Specimen part, Disease stage, Race

View Samples
accession-icon GSE88812
Gene expression data of trial drug Dehydroabietylamine derivative-2 (DAAD-2) for Sensitive (HEP3B) and resistant (SNU449) hepatocellular carcinoma (HCC) cell lines with controls
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is a highly prevalent and deadly disease world-wide. The survival of HCC patients is usually very poor due to the lack of efficient anti-cancer drugs

Publication Title

Synthesis and bio-molecular study of (+)-N-Acetyl-α-amino acid dehydroabietylamine derivative for the selective therapy of hepatocellular carcinoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE41762
Expression data from human pancreatic islets
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A gene co-expression network analysis has been conducted to identify T2D-associated gene modules. Donors 1-48 were used for the initial analysis and donors 49-80 for the replication and were normalized separately in this study

Publication Title

Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE19587
Imaging-guided microarray: Identifies molecular markers in the pathogenesis of Parkinsons disease
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The full complement of molecular pathways contributing to Parkinsons disease (PD) pathogenesis remains unknown. Here, to address this issue, we began by using a high-resolution variant of functional magnetic resonance imaging (fMRI) to pinpoint brainstem regions differentially affected by, and resistant to, the disease. Then, relying on the imaging information as a guide, we profiled gene expression levels of postmortem brain samples and used a factorial statistical model to identify a disease related decrease in the expression of the polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1). Next, a series of studies were performed to confirm the pathogenic relevance of this finding. First, to test for a causal link between polyamines and -synuclein toxicity, we investigated a yeast model expressing -synuclein. Polyamines were found to enhance the toxicity of -synuclein, and an unbiased genome-wide screen for modifiers of -synuclein toxicity identified Tpo4, a member of a family of proteins responsible for polyamine transport. Second, to test for a causal link between SAT1 activity and PD histopathology we investigated a mouse model expressing -synuclein. DENSPM (N1, N11-diethylnorspermine), a polyamine analog that increases SAT1 activity, was found to reduce PD histopathology, while Berenil (diminazene aceturate), a pharmacological agent that reduces SAT1 activity, worsened the histopathology. Third, we genotyped PD patients and controls and isolated a rare but novel variant in the SAT1 gene, although the functional significance of this genetic variant was not identified. Taken together, the results suggest that the polyamine pathway contributes to PD pathogenesis.

Publication Title

Polyamine pathway contributes to the pathogenesis of Parkinson disease.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon SRP069772
C9orf72 is required for proper macrophage and microglial function in mice
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting loss of function may play a role in disease. We find that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS patient tissue. Thus, C9orf72 is required for normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers. Overall design: To compare the RNA Seq profiles from the lumbar region of spinal cords from mice lacking one copy or both copies of the C9orf72 ortholog (3110043O21Rik) compared to wild type control with two copies at 3 months (n=3) and 17 months (n=4).

Publication Title

C9orf72 is required for proper macrophage and microglial function in mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP109169
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq pulse/chase labeling in wildtype mES cells]
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype mouse embryonic stem cells (mES cells) were subjected to s4U metabolic RNA labeling for 24 h (pulse, 100 µM s4U), followed by washout (chase) using non-thiol-containing uridine. Total RNA was prepared at various time points along the chase (0h, 0.5h, 1h, 3h, 6h, 12h, and 24h). Total RNA was then subjected to alkylation and mRNA 3' end sequencing library preparation (QuantSeq, Lexogen).

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109094
Thiol-linked alkylation for the metabolic sequencing of RNA [Transcriptional inhibition by Actinomycin D]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: 5 µg/ml Actinomycin D was added to wildtype mouse embryonic stem (mES) cells and total RNA was prepared at various time points after addition of Actinomycin D (0h, 0.25h, 0.5h, 1h, 3h and 10h). Total RNA was subjected to mRNA 3' end library preparation (QuantSeq, Lexogen) and high througput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109172
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq in wildtype and Xpo5 knockout mES cells]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype (wt) mouse embryonic stem (mES) cells, clonal mES cells that had been transfected with non-targeting control guide RNAs (ctr), or Exportin-5 depleted (Xpo5KO) mES cells were subjected to 3h and 12h s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3' end library preparation (QuantSeq, Lexogen) and high throughput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact