refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 600 results
Sort by

Filters

Technology

Platform

accession-icon SRP037573
HITS-CLIP analysis of Yb binding sites in Drosophila ovary cell line
  • organism-icon Drosophila melanogaster
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

piRNAs direct Piwi to repress transposons to maintain genome integrity in Drosophila ovarian somatic cells. piRNA maturation and association with Piwi occur at perinuclear Yb bodies, the centers of piRNA biogenesis. Here, we show that piRNA intermediates arising from the piRNA cluster flamenco (flam) concentrate into perinuclear foci adjacent to Yb bodies, termed Flam bodies. Although flam expression is not required for Yb body formation, Yb, the core component of Yb bodies, is required for Flam body formation. Abolishment of the RNA-binding activity of Yb disrupts both Yb bodies and Flam bodies. Loss of Zucchini, an endoribonuclease necessary for piRNA maturation, enlarges Flam bodies, which now superimpose with Yb bodies. Yb directly binds flam, but not neighboring protein-coding gene, transcripts. Thus, Yb integrates piRNA processing factors and piRNA intermediates into Yb bodies and Flam bodies, respectively, through direct binding to enhance piRNA biogenesis and formation of piRNA-inducing silencing complexes. Overall design: HITS-CLIP was performed using OSC (Ovarian Somatic Cells). The antibody for Drosophila Yb, which was generated in this study, was used. Obtained CLIP tags were analyzed using illumina HiSeq200.

Publication Title

Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52208
Expression data from Arabidopsis root in response to boron limitation
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Boron is essential for plants, and boron availability in soil is an important determinant of agricultural production. Boron availability in soil is limited at many regions in the world, including Japan. Under boron deficient conditions, leaf expansion and root elongation, apical dominance, flower development,and fruit and seed sets are inhibited.

Publication Title

The Minimum Open Reading Frame, AUG-Stop, Induces Boron-Dependent Ribosome Stalling and mRNA Degradation.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE93777
Multi-omics monitoring of drug response in rheumatoid arthritis.
  • organism-icon Homo sapiens
  • sample-icon 286 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE93272
Whole blood gene expression of rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 238 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sustained clinical remission (CR) without drug treatment has not been achieved in patients with rheumatoid arthritis (RA). This implies a substantial difference between CR and the healthy state, but it has yet to be quantified. We report a longitudinal monitoring of the drug response at multi-omics levels in the peripheral blood of patients with RA. Our data reveal that drug treatments alter the molecular profile closer to that of HCs at the transcriptome, serum proteome and immunophenotype level. Patient follow-up suggests that the molecular profile after drug treatments is associated with long-term stable CR. In addition, we identify molecular signatures that are resistant to drug treatments. These signatures are associated with RA independently of known disease severity indexes and are largely explained by the imbalance of neutrophils, monocytes, and lymphocytes. This high-dimensional phenotyping provides a quantitative measure of molecular remission and illustrates a multi-omics approach to understanding drug response.

Publication Title

Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE93776
Immune cells gene expression from rheumatoid arthritis and healthy donors
  • organism-icon Homo sapiens
  • sample-icon 163 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Sustained clinical remission (CR) without drug treatment has not been achieved in patients with rheumatoid arthritis (RA). This implies a substantial difference between CR and the healthy state, but it has yet to be quantified. We report a longitudinal monitoring of the drug response at multi-omics levels in the peripheral blood of patients with RA. Our data reveal that drug treatments alter the molecular profile closer to that of HCs at the transcriptome, serum proteome and immunophenotype level. Patient follow-up suggests that the molecular profile after drug treatments is associated with long-term stable CR. In addition, we identify molecular signatures that are resistant to drug treatments. These signatures are associated with RA independently of known disease severity indexes and are largely explained by the imbalance of neutrophils, monocytes, and lymphocytes. This high-dimensional phenotyping provides a quantitative measure of molecular remission and illustrates a multi-omics approach to understanding drug response.

Publication Title

Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP066166
Transcriptome Analysis of Drosophila Mushroom Body Neurons by Cell Type Reveals Memory-Related Changes in Gene Expression
  • organism-icon Drosophila melanogaster
  • sample-icon 176 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the application of low cell number sequencing of identifiable Drosophila melanogaster neurons following behavior. We demonstate the feasibility of identifying the transcriptome of 5 Mushroom Body output Neurons and 2 classes of Kenyon Cells. We find these neurons display a diverse repertoire of receptors and signaling transcripts. This information alone seems to be enough to identify each class of neurons in the study. In additional we show that aversive long-term memory induces changes in gene transcript levels in a subset of these neurons. This study provides a framework for identifying neuronal classes in Drosophila melanogaster and gaining insight into the interplay between behavior and gene regulation. Overall design: 5 Mushroom Body output neurons and 2 classes of kenyon cells are used to look at general gene expression and changes following aversive long term memory. Paired control and trained animals were used and a minimum of 4 pairs up to 6 pairs. Animals were of the same background (w1118). Animals were aged and parental matched. Cells were harvested at the same chronological time for the animals across all experiments. All animals were exposed to 1 minute of each odor and 1 minute of a series of 12 5second 60V shocks. This was considered one block and then the animals had spaced training of each block so there was a 10 minute break between 8 blocks of training. Trained animals had an odor paired with a shock, control animals received the shock then the odor stimulus. All cells were harvested usign a patch pipet from living animals on an electrophysiology rig within a half hour of the end of training. Cells were amplified using the Clontech SMARTer Ultra Low Input RNA version 2 High Volume kit. 2 Brain samples were also collected and 3-4 whole fly samples for each genotype were collected to account for background differences across flies.

Publication Title

Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE46270
Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo.

Publication Title

Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE141492
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The present study reveals LMYC and MXD1 as novel regulators of a transcriptional program that is modulated during the maturation of Batf3-dependent dendritic cells (also known as type I classical dendritic cells or cDC1s).

Publication Title

The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26524
Expression data from differentiating Flk1- and Flk1+ ES cells expressing Snail during Wnt inhibition
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

ES cells differentiated in the presence of the Wnt inhibitor DKK1 fail to express the transcription factor Snail and undergo EMT or mesoderm differentiation. We generated an ES cell line, A2.snail, that induced Snail expression upon addition of doxycycline addition.

Publication Title

Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37030
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact