refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 600 results
Sort by

Filters

Technology

Platform

accession-icon GSE46270
Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bcl11a is a transcription factor known to regulate lymphoid and erythroid development. Recent bioinformatic analysis of global gene expression patterns has suggested a role for Bcl11a in the development of dendritic cell (DC) lineages. We tested this hypothesis by analyzing the development of DC and other lineages in Bcl11a(-/-) mice. We show that Bcl11a is required for expression of IL-7 receptor (IL-7R) and Flt3 in early hematopoietic progenitor cells. The loss of IL-7R(+) common lymphoid progenitors accounts for previously described lymphoid defects in Bcl11a(-/-) mice. In addition, we found severely decreased numbers of plasmacytoid dendritic cells (pDCs) in Bcl11a(-/-) fetal livers and in the bone marrow of Bcl11a(-/-) fetal liver chimeras. Moreover, Bcl11a(-/-) cells show severely impaired in vitro development of Flt3L-derived pDCs and classical DCs (cDCs). In contrast, we found normal in vitro development of DCs from Bcl11a(-/-) fetal liver cells treated with GM-CSF. These results suggest that the persistent cDC development observed in Bcl11a(-/-) fetal liver chimeras reflects derivation from a Bcl11a- and Flt3-independent pathway in vivo.

Publication Title

Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE141492
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The present study reveals LMYC and MXD1 as novel regulators of a transcriptional program that is modulated during the maturation of Batf3-dependent dendritic cells (also known as type I classical dendritic cells or cDC1s).

Publication Title

The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26524
Expression data from differentiating Flk1- and Flk1+ ES cells expressing Snail during Wnt inhibition
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

ES cells differentiated in the presence of the Wnt inhibitor DKK1 fail to express the transcription factor Snail and undergo EMT or mesoderm differentiation. We generated an ES cell line, A2.snail, that induced Snail expression upon addition of doxycycline addition.

Publication Title

Snail promotes the cell-autonomous generation of Flk1(+) endothelial cells through the repression of the microRNA-200 family.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE37030
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34583
Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34541
Identification of gene targets of Meis2
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Meis2, another member of the same family, shares 82% protein identities with Meis1. Our present study suggested Meis2 exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis2 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis2 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34543
Identification of gene targets of Meis1
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Our present study suggested it exerts two distinguishable effects in differentiating ES cells. First, it increases the numbers of hematopoietic progenitors and extends their persistence in culture. Second, Meis1 skews hematopoietic differentiation by suppressing erythroid while enhancing megakaryocytic progenitor differentiation. To identify the underlying transcriptional bases of these actions, we carried out microarray analysis to compare the various populations of cells developing in ES differentiation cultures in the presence and absence of Meis1 induction.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34537
Mesp1 induces a subset of hematopoietic-associated transcription factors in ES cell-derived Flk1+Tie2+ endothelium
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Previously, we reported that the transcription factor Mesp1 promotes the cell fates of cardiomyocytes, smooth muscle, and vascular endothelium. Recently, hematopoietic stem cells (HSCs) were shown to derive from hemogenic endothelium. Since Mesp1 regulates development of endothelium, it potentially could influence gene expression related to hematopoietic development.

Publication Title

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE85173
Graded responses to variable TCR signaling are encoded in the affinities of AICE-containing enhancers responding to BATF and IRF4 [gene expression]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Variable strengths of T cell receptor (TCR) signaling can produce divergent outcomes for T cell development and function. The mechanisms leading to different outcomes are incompletely understood, but may include distinct activation thresholds for different transcription factors as well as distinct sensitivities among target genes to transcription factors. IRF4 is one transcription factor implicated in responses to variable TCR signal strength. IRF4 expression increases uniformly with increasing TCR signal strength (i.e., analog), but it is unclear how IRF4 induced distinct genes at different levels, rather than different amounts of the same genes. Here, we analyzed global gene expression in TH2 cells and used ChIP-seq to define the relationship between TCR signal strength, enhancer occupancy and transcriptional activity for BATF/IRF4-dependent genes. We show that enhancers exhibit a spectrum of affinity for the BATF/IRF4 ternary complex mediate graded responsiveness of individual genes to increasing TCR signal strength. Differential gene induction by BATF and IRF4 occurs through interaction with enhancer elements of different affinity for BATF/IRF4 complexes. The increased resolution of factor binding site identified using ChIP-exo allowed the identification of a novel AICE2 motif binding BATF/IRF4 with higher affinity and that this may explain the protective role of a single nucleotide polymorphism in the CTLA-4 locus known to decrease the incidence of autoimmune diseases.

Publication Title

Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF-IRF4 transcription factor complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE96584
The MHC class II transactivator Ciita has a highly restricted transcriptional footprint in murine classical dendritic cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Ciita has been suggested to control the expression of a number of genes based on ChIP-Seq or reporter anaysis but in vivo regulation beyong MHC class II has largely not been confirmed. We crossed Ciita knock out mice to Zbtb46 GFP knock-in knock out mice to identify classical dendritic cells in vivo in a Ciita deficient background.

Publication Title

Revisiting the specificity of the MHC class II transactivator CIITA in classical murine dendritic cells in vivo.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact