refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE109004
Transcriptome analysis of LRP5- and LRP6-depleted HCC38 cells.
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

In order to characterize the differences between the co-receptors LRP5 and LRP6, we have analyzed the transcriptome of HCC38 cells - a triple negative breast cancer cell line - 24, 48 and 72 hours following the depletion of LRP5 or LRP6 using siRNAs.

Publication Title

LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers.

Sample Metadata Fields

Disease, Disease stage, Cell line, Time

View Samples
accession-icon GSE78033
Expression Data from Uveal Melanoma patient-derived xenograft and tumor of origin
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 13.0 (huex10st)

Description

We compare the genetic profiles of the primary tumors of uveal melanoma or metastasis to their corresponding xenografts that have been passaged over time.

Publication Title

Patient-derived xenografts recapitulate molecular features of human uveal melanomas.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE80447
Expression data from proliferating and senescent IMR90 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Total RNA was isolated from proliferating and senescent IMR90 cells to compare gene-expression to the changes in nucleolus-association in proliferating and senescent IMR90 cells.

Publication Title

Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23702
Gene expression profiling of ATRA-differentiated wild-type and TG2 knockout NB4 cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNAi-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions and their silencing lead to reduced adhesive, migratory and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, 3, 22, 24 and cytokines IL1B and IL8 involved in the development of differentiation syndrome (DS) are expressed at significantly lower levels in TG2-KD NB4 cells than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of DS.

Publication Title

Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE78066
Global gene expression changes during immune complex-induced neutrophil activation (wild type and Card9/ cells)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

--- Raw data of the Supplementary Table 1 of the Nature Communications article 'Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo'

Publication Title

Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE55450
UBF Is An Epigenetic Factor Required For Ribosomal RNA Gene Activity And Preinitiation Complex Assembly But Not For Nucleolar Body Formation
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using conditional gene deletion in mouse, we now show that UBF is indeed essential for transcription of the rRNA genes.

Publication Title

Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE5081
Expression data from Helicobacter positive and negative human gastritis samples
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The whole-genome oligonucleotide microarray analysis gives an opportunity for studying the unidentified gene expression background of the idiopathic and H.pylori related gastric erosive alterations. Using microarrays we compared the whole genome gene expression profile of HP+ and HP- gastric erosions and normal adjacent mucosa to explain the possible role and response to HP infection and to get morphology related mRNA expression patterns.

Publication Title

Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE119351
A Deiodinase Polymorphism Causes ER-Stress And Hypothyroidism In The Brain
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Expression data from different brain regions of mice

Publication Title

Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact