refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE36667
Gene expression profiles of induced pluripotent stem cells from centenarians
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We established induced pluripotent stem cells (iPSC) from centrenarians by retroviral transduction of primary human fibroblasts. To show the similarity between 201B7 iPSC and 100-1 #16 iPSC (induced pluripotent stem cells from centenarian), this experiment was designed.

Publication Title

Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP095948
Virus Mimicry in the Tumor Microenvironment Activates RIG-I Through Unshielding of Endogenous RNA in Exosomes [patients RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The goal of this study is to investigate if endogenous RNA in exosomes activates RIG-I through unshielding. Overall design: transcription profiling of exosomal RNA isolated from breast cancer patients before, during and after radiation therapy.

Publication Title

Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP095943
Virus Mimicry in the Tumor Microenvironment Activates RIG-I Through Unshielding of Endogenous RNA in Exosomes [exoRNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The goal of this study is to investigate if endogenous RNA in exosomes activates RIG-I through unshielding. Overall design: transcription profiling for exosomal RNA isolated from stroma cell (MRC5) or stroma/breast cancer cell co-culture (MRC5 and 1833).

Publication Title

Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP050076
Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Unrestrained receptor tyrosine kinase (RTK) signaling and epigenetic deregulation are root causes of tumorigenesis. We establish linkage between these processes by demonstrating that aberrant RTK signaling unleashed by oncogenic HRasG12V or loss of negative feedback through Sprouty gene deletion remodels histone modifications associated with active typical and super-enhancers. However, while both lesions disrupt the Ras-Erk axis, the expression programs, enhancer signatures, and transcription factor networks modulated upon HRasG12V-transformation or Sprouty deletion are largely distinct. Oncogenic HRasG12V elevates histone 3 lysine 27 acetylation (H3K27ac) levels at enhancers near the transcription factor Gata4 and the kinase Prkcb, as well as their expression levels. We show that Gata4 is necessary for the aberrant gene expression and H3K27ac marking at enhancers, and Prkcb is required for the oncogenic effects of HRasG12V-driven cells. Taken together, our findings demonstrate that dynamic reprogramming of the cellular enhancer landscape is a major effect of oncogenic RTK signaling. Overall design: We assessed gene expression changes upon loss of feedback regulation through Sprouty (Spry) deletion, and upon unrestrained signaling driven by mutant oncogenes. RNA-seq was performed in biological triplicate; replicate number is included in the sample name. Spry124fl/fl (VEC) and Spry124-/- (CRE) MEFs were profiled in three conditions: unsynchronized (U), serum starved (S), and serum starved and FGF treated (F). Spry124fl/fl (VEC) MEFs transduced with empty vector (EV) control or the indicated oncogenes (KRasG12V, HRasG12V, and BRafV600E) as well as Spry124-/- (CRE) MEFs transduced with EV control were profiled in the unsynchronized state.

Publication Title

Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60998
Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE60994
Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways [set 1]
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.

Publication Title

Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60995
Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways [set 2]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.

Publication Title

Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108374
YY1 is a structural regulator of enhancer-promoter loops [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not depend on this structural protein. Here we show that the transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements in all cells examined. YY1 forms dimers that can facilitate DNA interactions. Deletion of YY1 binding sites or depletion of YY1 can disrupt enhancer-promoter looping and normal gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control. Overall design: Single-end 40 bp Poly-A RNA-seq in mouse embryonic stem cells before and after YY1 depletion

Publication Title

YY1 Is a Structural Regulator of Enhancer-Promoter Loops.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon SRP116928
YY1 is a structural regulator of enhancer-promoter loops [scRNA-seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

There is considerable evidence that chromosome structure plays important roles in gene control, but we have limited understanding of the proteins that contribute to structural interactions between gene promoters and their enhancer elements. Large DNA loops that encompass genes and their regulatory elements depend on CTCF-CTCF interactions, but most enhancer-promoter interactions do not depend on this structural protein. Here we show that the transcription factor Yin Yang 1 (YY1) contributes to enhancer-promoter structural interactions in a manner analogous to DNA interactions mediated by CTCF. YY1 binds to active enhancers and promoter-proximal elements in all cells examined. YY1 forms dimers that can facilitate DNA interactions. Deletion of YY1 binding sites or depletion of YY1 can disrupt enhancer-promoter looping and normal gene expression. We propose that YY1-mediated enhancer-promoter interactions are a general feature of mammalian gene control. Overall design: Single-cell RNA-seq in mouse embryonic stem cells with and without YY1 protein

Publication Title

YY1 Is a Structural Regulator of Enhancer-Promoter Loops.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE9984
Profiling Gene Expression in Human Placentae of Different Gestational Ages: an OPRU Network and UW SCOR Study
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used a whole genome approach to identify major functional gene categories (including xenobiotic transporters and metabolizing enzymes) whose expression depends on gestational age. STUDY DESIGN: We compared gene expression profiles of 1st (45-59 days) and 2nd trimester (109-115 days), and C-section term placentae. RESULTS: In 1st trimester placentae, genes related to cell cycle, DNA, aminoacids and carbohydrate metabolism were significantly overrepresented, while genes related to signal transduction were downregulated. In the organism defense category, we identified genes involved in chemical response, metabolism, and transport. Analysis of signal transduction pathways suggested, and subsequently confirmed independently, that the Wnt pathway was regulated by gestational age. CONCLUSIONS: Our study will serve as a reference database to gain insight into the regulation of gene expression in the developing placentae and, thus, allow comparisons with placentae from complicated pregnancies such as those in women experiencing gestational diabetes, pre-eclampsia and teratogenic sequelae.

Publication Title

Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact