refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 367 results
Sort by

Filters

Technology

Platform

accession-icon GSE29963
Expression data of pachytene spermatocytes and round spermatids from young and aged Brown Norway rats
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Male fertility and testis function changes with age and so it was sought to determine if these changes are accompanied by changes in gene expression.

Publication Title

Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP102431
RNA sequencing analysis of HL-1 cardiomyocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Analysis of murine cardiomyocyte cell line HL-1 treated with Ivermectin or Importazole. Results provide insight into the pathways regulated by the treatments. Overall design: RNA-seq of mouse HL-1 cardiomyocytes treated with vehicle (DMSO), Ivermectin, or Importazole for 24 hours, in triplicate, using Ion Proton System.

Publication Title

Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE137952
A vasodilator Oxyfedrine Inhibits Aldehyde Metabolism and thereby Sensitizes Cancer Cells to Glutathione Depleting Agents
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

The major antioxidant glutathione (GSH) protects cancer cells from oxidative damage leading to ferroptosis, an iron-dependent cell death. Therapy-resistant cancer cells often manifest high expression of the cystine-glutamate antiporter subunit xCT which enhances cystine uptake leading to GSH synthesis and thereby survive oxidative damage and ferroptosis. The use of GSH-depleting agents including xCT inhibitors might thus be expected to enhance the efficacy of cancer therapy. On the other hand, the efficacy of xCT-targeted therapy depends on the cellular metabolism affecting antioxidant system in cancer cells and metabolic reprograming might reduce the efficacy of cancer therapy using xCT inhibitors. Recently, to overcome the resistance to xCT-targeted therapy, we performed a library screening and identified an oral anesthetics dyclonine (DYC) as a sensitizing drug for xCT inhibitor sulfasalazine (SSZ). However, DYC is a local anesthetic and might not suitable for the systemic administration combined with SSZ in a clinical setting. In this study, we identified a vasodilator oxyfedrine (OXY) which is clinically used in systemic administration also acts as a sensitizing drug to GSH-depleting agents in multiple type of cancer cells. OXY and DYC share the motif required for the covalent inhibition of aldehyde dehydrogenases (ALDHs), and combined treatment with OXY and SSZ induced the accumulation of cytotoxic aldehyde 4-hydroxynonenal (4-HNE) and induce cell death in SSZ-resistant cancer cells. Furthermore, we found that OXY sensitizes cancer cells to radiation therapy which decreases intracellular GSH content. Our findings establish a rationale for repurposing of OXY as a sensitizing drug for xCT-targeted cancer therapy.

Publication Title

Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP076902
Dysregulated immune system networks in war veterans with PTSD
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: RNA-Seq analysis can help identify large set of differentially expressed genes at a time. We performed RNA-Seq analysis to identify differentially expressed genes in the PBMCs of war veterans suffering from PTSD. Methods: Total RNA from PBMCs from PTSD +ve and -ve individuals were used for RNA-Seq analysis. Results: We obtained, on average, ~60 millions reads per sample. More than 70% of the reads were mapped to human genome. Functional analysis of the differentially expressed genes (362) revealed dysregulation in immune system network. Conclusions: Our present study provides further proof that immune system related genes and pathways are dysregulated in PTSD PBMCs. Overall design: RNA-Seq was performed with RNA from 5 each control and PTSD individuals. PBMCs collected within one hour of blood draw were used for RNA isolation. 1 ug of total RNA was used for library synthesis and sequenced in a HighSeq 2000 illumina instrument at Tufts University.

Publication Title

Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE24775
Genome-wide expression analysis of the mouse pars tuberalis (PT) under chronic short-day and long-day conditions
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Living organisms detect seasonal changes in day length (photoperiod), and alter their physiological functions accordingly, to fit seasonal environmental changes. This photoperiodic system is implicated in seasonal affective disorders and the season-associated symptoms observed in bipolar disease and schizophrenia. Thyroid-stimulating hormone beta subunit (Tshb), induced in the pars tuberalis (PT), plays a key role in the pathway that regulates animal photoperiodism. However, the upstream inducers of Tshb expression remain unknown. Here we show that late-night light stimulation acutely triggers the Eya3-Six1 pathway, which directly induces Tshb expression. Using melatonin-proficient CBA/N mice, which preserve the photoperiodic Tshb-expression response, we performed a genome-wide expression analysis of the PT under chronic short-day and long-day conditions. These data comprehensively identified long-day and short-day genes, and indicated that late-night light stimulation induces long-day genes. We verified this by advancing and extending the light period by 8 hours, which acutely induced Tshb expression, within one day. In a genome-wide expression analysis under this condition, we searched for candidate upstream genes by looking for expression that preceded Tshbs, and identified Eya3 gene. These results elucidate the comprehensive transcriptional photoperiodic response in the PT, revealing the complex regulation of Tshb expression and unexpectedly rapid response to light changes in the mammalian photoperiodic system.

Publication Title

Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE80983
Transcriptomes of mouse PGCLCs isolated from 6-day culture embryoid bodies were compared with transcriptomes of their precur cells (ESCs, iPSCs, and EpiLCs) and E12.5 in vivo mouse PGCs
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptomes of mouse E12.5 primordial germ cells (PGCs), primordial germ cell-like cells (PGCLCs) isolated from 6-day culture embryoid bodies, and the precursor pluripotent stem cells [embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and epiblast-like cells (EpiLCs)

Publication Title

Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE70514
Effect of Kurozu on hippocampal gene expression profiles in SAMP8
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence accelerated P8 mouse. Senescence accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect, however, the level of lipid peroxidation in the brain did not differ in senescence accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. Therefore, the suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.

Publication Title

The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE67104
Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

G-CSF treatment targets CXCL12-abundant reticular (CAR) cells to suppress their production of a number of B trophic factors, including CXCL12, IL-6, IL-7, IGF-1, and Flt3 ligand.

Publication Title

Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE73970
Identifying the differentially expressed genes between ADI-PEG20 resistant and parental Ju77 cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Identifying the differentially expressed genes between ADI-PEG20 resistant and parental Ju77 cell line

Publication Title

Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP098968
Transcriptome analysis revealed impaired cAMP responsiveness in PHF21A-deficient human cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We performed RNA-Seq on PHF21A-deficient patient-dervied lymphoblasts as well as two unaffected individuals. Overall design: We performed RNA-Seq from patient-derived lymphoblast cells. Libraries were polyA-selected and strand-specific according to the protocol described in PMID: 25607527

Publication Title

Transcriptome Analysis Revealed Impaired cAMP Responsiveness in PHF21A-Deficient Human Cells.

Sample Metadata Fields

Sex, Specimen part, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact