refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 367 results
Sort by

Filters

Technology

Platform

accession-icon GSE12320
Differential gene expression in GBS6 cells after EWS-POU5F1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Our objective is to clarify the function of EWS-POU5F1 chimera.

Publication Title

Function of EWS-POU5F1 in sarcomagenesis and tumor cell maintenance.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP083308
Gene expression profiles of Hes1 positive retinal subsets
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To analyze Mueller glia specific gene expression, Hes1-promoter-dEGFP mice was used. dEGFP positive and negative retinal fractions were purified by a cell sorter and subjected to RNA-seq Overall design: Examination of mRNA expression patterns in Hes1-positive (Hes1P) retinal cells and Hes1-negative (Hes1N) retinal cells at 2 developmental timepoints.

Publication Title

Analysis of Müller glia specific genes and their histone modification using Hes1-promoter driven EGFP expressing mouse.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP102431
RNA sequencing analysis of HL-1 cardiomyocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Analysis of murine cardiomyocyte cell line HL-1 treated with Ivermectin or Importazole. Results provide insight into the pathways regulated by the treatments. Overall design: RNA-seq of mouse HL-1 cardiomyocytes treated with vehicle (DMSO), Ivermectin, or Importazole for 24 hours, in triplicate, using Ion Proton System.

Publication Title

Antihypertrophic Effects of Small Molecules that Maintain Mitochondrial ATP Levels Under Hypoxia.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE11965
Contribution of HSD17B12 for estradiol biosynthesis in human breast cancer
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

17beta-hydroxysteroid dehydrogenase type12 (HSD17B12) has been demonstrated to be involved in regulation of in situ biosynthesis of estradiol (E2). HSD17B12 expression was reported in breast carcinomas but its functions have remained unknown. Therefore, we examined the correlation between mRNA expression profiles determined by microarray analysis and tissue E2 concentrations obtained from 16 postmenopausal breast carcinoma cases in order to analyze an association of the enzyme expression with intratumoral E2 production. No significant correlations were detected between intratumoral HSD17B12expression and E2 concentration.These findings suggest that the presence of HSD17B12 in carcinoma cells contributes to a development of human breast carcinoma via a pathway other than in situ E2 biosynthesis.

Publication Title

17Beta-hydroxysteroid dehydrogenase type 12 in human breast carcinoma: a prognostic factor via potential regulation of fatty acid synthesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE67104
Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

G-CSF treatment targets CXCL12-abundant reticular (CAR) cells to suppress their production of a number of B trophic factors, including CXCL12, IL-6, IL-7, IGF-1, and Flt3 ligand.

Publication Title

Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE36897
Expression data from mouse neural cells and tumors
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neural stem cells (NSCs) are considered to be the cell-of-origin of brain tumor stem cells. To identify the genetic pathways responsible for the transformation of normal NSCs to brain-tumor-initiating cells, we used Sleeping Beauty (SB) transposons, to mutagenize NSCs. Mobilized SB transposons induced the immortalization of NSCs. Immortalized NSCs induced tumors upon subcutaneous transplantation in immunocompromized mice. To further classify the immortalized cells and mouse tumors, we performed Gene Set Enrichment Analysis (GSEA) using DNA microarray data.

Publication Title

Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12752
Gene expression data from corticosteroid-treated neonatal rat cardiomyocytes
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Recent studies have highlighted the role of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), and these ligand-receptor interactions are redundant. Therefore, it has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart.

Publication Title

Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47684
Recurrent mutations of multiple components of cohesin complex in myeloid neoplasms
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE47641
Expression analysis of mock- or RAD21-transduced Kasumi1 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We recently identified recurrent mutations of cohesin complex in myeloid neoplasms through whole-exome sequencing analysis. RAD21 is one of the main components of the cohesin complex.

Publication Title

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE138482
Effect of DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone) inhalation on gene expression in Rat brain
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is one of the major odor compounds generated by the Maillard reaction. We previously reported that the inhalation of DMHF decreased systolic blood pressure via the autonomic nervous system in rats. The autonomic nervous system is also closely related to appetite regulation. The present study investigated the effects of DMHF on dietary intake and gene expression.

Publication Title

DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone), a volatile food component generated by the Maillard reaction, promotes appetite and changes gene expression in the rat brain through inhalation.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact