refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 160 results
Sort by

Filters

Technology

Platform

accession-icon GSE70526
Expression data from plant tissues during incompatible interaction between the rice host and its major pest, the Asian rice gall midge
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

During an incompatible or compatible interaction between rice (Oryza sativa) and the Asian rice gall midge (Orseolia oryzae), a lot of genetic reprogamming occurs in the plant host

Publication Title

Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9247
Effect of histone deacetylase inhibitors on osteoblast gene expression
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background:

Publication Title

Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28997
Function-based discovery of significant transcriptional temporal patterns in insulin-stimulated muscle cells
  • organism-icon Rattus norvegicus
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: Insulin's effect on protein synthesis (translation of transcripts) and post-translational modifications, especially those involving reversible modifications such as phosphorylation of various signaling proteins, are extensively studied. On the other hand, insulin's effect on the transcription of genes, especially of transcriptional temporal patterns, is not well investigated in the literature.

Publication Title

Function-based discovery of significant transcriptional temporal patterns in insulin stimulated muscle cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE40125
Expression data from Amacr knock-out mouse liver and intestine
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phytol is lethal for Amacr-deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40124
Expression data from Amacr knock-out mouse intestine
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bile acids play multiple roles in vertebrate metabolism by facilitating lipid absorption in the intestine and acting as a signaling molecule in lipid and carbohydrate metabolism. Bile acids are also the main route to excrete excess cholesterol out of the body. Alpha-methyl-Coa racemase (Amacr) is one of the enzymes needed to produce bile acids from cholesterol. The mouse model lacking Amacr can produce only minor (less than 10%) amounts of bile acids, but still they are symptomless in normal laboratory conditions.

Publication Title

Phytol is lethal for Amacr-deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22538
Differential expression for rice-gall midge interaction
  • organism-icon Oryza sativa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

We exposed Kavya rice seedlings to different gall midge biotypes, GMB1 and GMB4M, which exhibit incompatible and compatible interactions, respectively.

Publication Title

A novel mechanism of gall midge resistance in the rice variety Kavya revealed by microarray analysis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40085
Expression data from Amacr knock-out mouse liver
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bile acids play multiple roles in vertebrate metabolism by facilitating lipid absorption in the intestine and acting as a signaling molecule in lipid and carbohydrate metabolism. Bile acids are also the main route to excrete excess cholesterol out of the body. Alpha-methyl-Coa racemase (Amacr) is one of the enzymes needed to produce bile acids from cholesterol. The mouse model lacking Amacr can produce only minor (less than 10%) amounts of bile acids, but still they are symptomless in normal laboratory conditions.

Publication Title

Phytol is lethal for Amacr-deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE95214
Ventral prostate in male F344 rats: Control vs. PhIP treatment
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The gene expression profling between Control and 300 mg/kg PhIP treatment in ventral prostate lobe of male F344 rats

Publication Title

Early detection of prostate carcinogens by immunohistochemistry of HMGB2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9103
Skeletal Muscle Transcript Profiles in Trained or Sedentary Young and Old Subjects
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aging is associated with mitochondrial dysfunction and insulin resistance. We conducted a study to determine the role of long-term vigorous endurance exercise on age-related changes in insulin sensitivity and various indices of mitochondrial functions.

Publication Title

Endurance exercise as a countermeasure for aging.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE82140
Sebaceous gland atrophy in psoriasis: An explanation for psoriatic alopecia?
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

In a transcriptome study of psoriatic (PP) vs. normal (NN) skin, we found a co-expressed gene module (N5) enriched 11.5-fold for lipid biosynthetic genes. We also observed fewer visible hairs in PP skin, compared to uninvolved (PN) or NN skin (p<0.0001). To ask whether these findings might be due to abnormalities of the pilosebaceous unit, we carried out 3D morphometric analysis of paired PP and PN biopsies. Sebaceous glands (SG) were markedly atrophic in PP vs. PN skin (91% average reduction in volume, p=0.031). Module N5 genes were strongly downregulated in PP vs. NN skin (fold-change [FC] < 0.25, 44.4-fold), and strongly up-regulated in sebaceous hyperplasia (SH, FC > 4, 54.1-fold). The intersection of PP-downregulated and SH-upregulated gene lists generated a gene expression signature consisting solely of module N5 genes, whose expression in PP vs. NN skin was inversely correlated with the signature of IL17-stimuated keratinocytes. Despite loss of visible hairs, morphometry identified elongated follicles in PP vs. PN skin (average 1.7 vs. 1.2 Jm, p=0.020). These results document SG atrophy in non-scalp psoriasis, identify a cytokine-regulated set of SG signature genes, and suggest that loss of visible hair in PP skin may result from abnormal SG function.

Publication Title

Sebaceous Gland Atrophy in Psoriasis: An Explanation for Psoriatic Alopecia?

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact