refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon GSE9829
Focal gains of VEGFA and molecular classification of hepatocellular carcinoma
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The data are derived from anonymized patient samples for which demographic information is not provided

Publication Title

Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE9843
Gene expression profiling of 91 hepatocellular carcinomas with hepatitis C virus etiology
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To characterize the genetic alterations that instigate hepatitis C virus-induced hepatocellular carcinoma (HCC), we conducted an integrative genomic analysis of 103 HCCs. Most tumors harbored 1q gain, 8q gain or 8p loss, with occasional alterations in 13 additional chromosome arms. In addition to amplifications at 11q13 in 6 tumors, 4 tumors harbored focal gains at 6p21 incorporating VEGFA, which were confirmed in 4 of 113 HCC in an independent validation set. Strikingly, this locus overlapped with copy gains in 4 of 371 lung adenocarcinomas. Overexpression of VEGFA via 6p21 gain suggested a cell-nonautonomous mechanism of oncogene activation. Hierarchical clustering of gene expression among 91 tumors identified 5 classes, including Wnt-CTNNB1, proliferation and interferon-related gene classes. We also discovered a novel class defined by polysomy of chromosome 7, gains of which were associated with early tumor recurrence after resection. These findings reveal key alterations in HCC pathogenesis and implicate potential therapeutic targets.

Publication Title

Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP074063
Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Targeting the Mdm2 oncoprotein by drugs has the potential of re-establishing p53 function and tumor suppression. However, Mdm2-antagonizing drug candidates, e. g. Nutlin-3a, often fail to abolish cancer cell growth sustainably. To overcome these limitations, we inhibited Mdm2 and simultaneously a second negative regulator of p53, the phosphatase Wip1/PPM1D. When combining Nutlin-3a with the Wip1 inhibitor GSK2830371 in the treatment of p53-proficient but not p53-deficient cells, we observed enhanced phosphorylation (Ser 15) and acetylation (Lys 382) of p53, increased expression of p53 target gene products, and synergistic inhibition of cell proliferation. Surprisingly, when testing the two compounds individually, largely distinct sets of genes were induced, as revealed by deep sequencing analysis of RNA. In contrast, the combination of both drugs led to an expression signature that largely comprised that of Nutlin-3a alone. Moreover, the combination of drugs, or the combination of Nutlin-3a with Wip1-depletion by siRNA, activated p53-responsive genes to a greater extent than either of the compounds alone. Simultaneous inhibition of Mdm2 and Wip1 enhanced cell senescence and G2/M accumulation. Taken together, the inhibition of Wip1 might fortify p53-mediated tumor suppression by Mdm2 antagonists. Overall design: Expression profiling by high throughput sequencing

Publication Title

Cooperation of Nutlin-3a and a Wip1 inhibitor to induce p53 activity.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE68001
In vitro activation and reversion of human primary hepatic stellate cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Liver fibrosis is characterized by the excessive formation and accumulation of matrix proteins as a result of wound healing in the liver. A main event during fibrogenesis is the activation of the liver resident quiescent hepatic stellate cell (qHSC). Recent studies suggest that reversion of the activated HSC (aHSC) phenotype into a quiescent-like phenotype could be a major cellular mechanism underlying fibrosis regression in the liver, thereby offering new therapeutic perspectives for the treatment of liver fibrosis. The goal of the present study is to identify experimental conditions that can revert the activated status of human HSCs and to map the molecular events associated with this phenotype reversion by gene expression profiling

Publication Title

In vitro reversion of activated primary human hepatic stellate cells.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP076307
Single cell RNA-seq of human pancreatic endocrine cells from Juvenile, adult control and type 2 diabetic donors.
  • organism-icon Homo sapiens
  • sample-icon 1113 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 2500

Description

We successfully sequenced and annotated more than 400 cells from child, adult control, type 1 diabetes and type 2 diabetes donors. We detect donor-type specific transcript variation. We also report that cells from child donors have less defined gene signature. Cells from type 2 diabetes donors resemble juvenile cells in gene expression. Overall design: Cells from three adult controls (56, 74, 92), one donor with type 1 diabetes (91), two donors with type 2 diabetes (75, 143), and two child donors (40, 72) were sequenced. Numbers in parathesis indicates number of cells sequenced.

Publication Title

Single-Cell Transcriptomics of the Human Endocrine Pancreas.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP056103
Diabetes Enhances the Proliferation of Adult Pancreatic Multipotent Progenitor Cells and Biases Their Differentiation to More Beta-Cell Production
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Endogenous pancreatic multipotent progenitors (PMPs) are ideal candidates for regenerative approaches to compensate for b-cell loss since their b-cell–producing capacities as well as strategic location would eliminate unnecessary invasive manipulations. However, little is known about the status and potentials of PMPs under diabetic conditions. Here we show that b-cell metabolic stress and hyperglycemia enhance the proliferation capacities of adult PMP cells and bias their production of progeny toward b-cells in mouse and human. These effects are dynamic and correlate with functional b-cell regeneration when conditions allow. Overall design: Insulin-positive Glut2-low cell population of adult pancreatic tissue is enriched for PMP cells. Streptozocin (STZ) can enter beta-cells via Glut2 , induce cell death and consequently diabetes. Insulin-positive cells from two groups (STZ-injected experiment and vehicle-injected control, n=3/group) of MIP-GFP transgenic male mice were sorted to Glut2-low (Glut2L) and Glut2-high (Glut2H) by FACS. Total RNA from these samples were extracted for transcriptome analysis.

Publication Title

Diabetes enhances the proliferation of adult pancreatic multipotent progenitor cells and biases their differentiation to more β-cell production.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31562
Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Stem cell biology has garnered much attention due to its potential to impact human health through disease modeling and cell replacement therapy. This is especially pertinent to myelin-related disorders such as multiple sclerosis and leukodystrophies where restoration of normal oligodendrocyte function could provide an effective treatment. Progress in myelin repair has been constrained by the difficulty in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs but significant advances are currently hindered by heterogeneous differentiation strategies that lack reproducibility. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through a defined series of developmental transitions into a pure population of highly expandable OPCs in ten days. These OPCs robustly differentiate into myelinating oligodendrocytes both in vitro and in vivo. Our results demonstrate that pluripotent stem cells can provide a pure population of clinically-relevant, myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development, drug screening, and potential cell-based remyelinating therapies.

Publication Title

Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34551
NPTX1 is a Critical Regulator of Neural Induction in Human Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

NPTX1 is a key inducer of neural lineages from the human ESC.

Publication Title

NPTX1 regulates neural lineage specification from human pluripotent stem cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE112449
Microarray analysis comparing gene expression of callus tissue extracted from either Cyp24a1-null mice or their control heterozygous littermates
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The 24R,25-dihydroxyvitamin D metabolite (24R,25D) has long been suspected of participating to bone fracture repair. We used Cyp24a1-deficient mice, unable to produce 24R25D, to observe gene expression in callus tissue compared to that of control littermates.

Publication Title

Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2.

Sample Metadata Fields

Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE9445
Low and High Capacity Runners - Sedentary and Trained: Left Ventricle
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Aerobic capacity is a strong predictor of cardiovascular mortality. To determine the relationship between aerobic capacity and cardiac gene expression we examined genome-wide gene expression in hearts of rats artificially selected for high- and low running capacity (HCR and LCR, respectively) over 16 generations. HCR were born with an athletic phenotype, whereas LCR exhibited features of the metabolic syndrome.

Publication Title

Aerobic capacity-dependent differences in cardiac gene expression.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact