refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 607 results
Sort by

Filters

Technology

Platform

accession-icon GSE142018
Dysregulation of MITF in the context of defective MC1R and RB1/p16/CDK4 leads to melanocyte transformation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE142012
Dysregulation of MITF in the context of defective MC1R and RB1/p16/CDK4 leads to melanocyte transformation [microarray]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Expression analysis of immortalized melanocytes Hermes 3c and Hermes 4c derivative cell lines following lentiviral transduction of a HA-tagged MITF-M construct (pLX3xHAvar4mCherry) or control construct (pLVX IRES mCherry).

Publication Title

Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE90922
Expression data in JDCaP prostate cancer xenograft model before and after expression of AR splice variants
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Our previous study using nude rats revealed that the parental JDCaP xenografts predominantly expressed full-length androgen receptor (AR) whereas the relapsed JDCaP xenografts after castration acquired AR splice variants including AR-V7 and ARv567es. To understand molecular mechanisms underlying the acquisition of AR splice variants in the JDCaP model, we performed microarray analysis using RNA samples of the xenografts without castration (Parent), the relapsed xenografts overexpressing full-length AR and AR-V7 (ARhiV7hi), and the relapsed xenografts expressing ARv567es (ARv567es).

Publication Title

The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68837
Expression data from cell lines forced expressed PGC7/Stella
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Global DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.

Publication Title

Global DNA hypomethylation coupled to cellular transformation and metastatic ability.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP032537
Transcriptome of Nkx2-5-null atria
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Atrial specific knockout of Nkx2-5 results in hyperplastic atria with ASD and conduction defects. To examine how Nkx2-5 regulates cardiac proliferation at late gestational stages, RNA-seq was performed. Overall design: Examination of expression profile of 2 Nkx2-5-null atria and 3 controls

Publication Title

Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059609
RNA-Sequencing of primary myoblasts from mice with a satellite cell specific knockout of the histone demthylase UTX/KDM6A
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

The KDM6 histone demethylases (UTX/KDM6A and JMJD3/KDM6B) mediate removal of repressive histone H3K27me3 marks to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog lacking H3K27-demethylase activity. This suggests that UTX plays an enzyme-independent role in development, and challenges the need for active H3K27-demethylation in vivo. However, the requirement for active H3K27-demethylation in stem cell-mediated tissue regeneration remains untested. Using an inducible mouse knockout that ablates UTX in satellite cells, we show that active H3K27-demethylation is necessary for muscle regeneration. Indeed, loss of UTX in satellite cells blocks myofiber regeneration in both male and female mice. Furthermore, we demonstrate that UTX mediates muscle regeneration through its H3K27-demethylase activity using a chemical inhibitor, and a demethylase-dead UTX knock-in mouse. Mechanistically, dissection of the muscle regenerative process revealed that UTX is required for expression of the transcription factor Myogenin that drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration, revealing for the first time that active H3K27-demethylation has a physiological role in vivo. Overall design: Satellite cells were sorted based on Cre-dependent expression of TdT reporter gene. Sorted UTXmKO or UTX WT satellite cells were then induced to differentiate for 24 hrs. RNA was then isolated and subjected to RNA-Seq analysis.

Publication Title

UTX demethylase activity is required for satellite cell-mediated muscle regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67922
Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.

Publication Title

Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE67810
Gene expression alterations by the mTORC1-FOXK1 pathway
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.

Publication Title

Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE67808
Profiling gene expression of HeLa cells transfected with FOXK1
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

C-C chemokine ligand 2 (CCL2) plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF)B signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1) but independent of NF-B. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1) as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1 resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-B, and that CCL2 produced by this pathway contributes to tumor progression.

Publication Title

Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE20196
Gene expression profile of poorly differentiated synovial sarcoma
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Poorly differentiated type synovial sarcoma (PDSS) is a variant of synovial sarcoma characterized by predominantly round or short-spindled cells. Although accumulating evidence from clinicopathological studies suggests a strong association between this variant of synovial sarcoma and poor prognosis, little has been reported on the molecular basis of PDSS. To gain insight into the mechanism(s) that underlie the emergence of PDSS, we analyzed the gene expression profiles of 34 synovial sarcoma clinical samples, including 5 cases of PDSS, using an oligonucleotide microarray. In an unsupervised analysis, the 34 samples fell into 3 groups that correlated highly with histological subtype, namely, monophasic, biphasic, and poorly differentiated types. PDSS was characterized by down-regulation of genes associated with neuronal and skeletal development and cell adhesion, and up-regulation of genes on a specific chromosomal locus, 8q21.11. This locus-specific transcriptional activation in PDSS was confirmed by reverse transcriptase (RT)-PCR analysis of 9 additional synovial sarcoma samples. Our results indicate that PDSS tumors constitute a distinct genetic group based on expression profiles.

Publication Title

Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact