refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon GSE25330
Expression data from In vitro induced C2 M cells in the presence of commensal bacteria
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

M cells are the main site of bacterial translocation in the intestine. We used the in vitro M cell model to study the effect of the commensal bacteria; Lactobacillus salivarius, Eschericha coli and Bacteroides fragilis, on M cell gene expression.

Publication Title

Differential intestinal M-cell gene expression response to gut commensals.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP014662
A comprehensive view of the transcriptome during development of the mouse cerebral cortex
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The complexity of the mature adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the process of brain development is to examine gene expression changes, and previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as both alternative splicing and RNA editing occur to generate a more diverse set of mature transcripts. The aim of the current study was to develop a high-resolution transcriptome dataset of mouse cortical development using RNA sequencing (RNA-Seq), thus assaying exon usage and RNA editing as well as overcoming some of the inherent limitations of microarrays. We found a large number of differentially expressed genes, but also altered splicing and RNA editing between embryonic and adult cerebral cortex. Each dataset was validated both technically and biologically, and in each case tested we found our RNA-Seq observations to have high predictive validity. We propose this dataset, and the accompanying analysis, to be a helpful resource in the understanding of changes in gene expression during development. Overall design: Three young adult cerebral cortices four embryonic cerebral cortices

Publication Title

mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE12113
Antitumor Activity and Molecular Effects of the Novel Hsp 90 Inhibitor, IPI-504, in Pancreatic Cancer
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumors from pancreatic cancer specimens obtained at surgery were used for efficacy testing and biologic analysis. These tumors were s.c. explanted in xenograft models for subsequent treatment experiments.

Publication Title

Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37383
Ulipristal and Progesterone Receptor
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE37353
Gene expression profiling of ovaries collected from mice treated with or without Ulipristal
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ulipristal acetate (UPA), also referred to as VA/CDB-2914, is a new and promising emergency contraceptive. It is a selective progesterone receptor modulator (SPRM) that has been approved in Europe and the USA for emergency contraception.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE37354
Gene expression profiling of ovaries collected from wild type (WT) mice and progesterone receptor (PR) knock out mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Previous studies have shown that PR is a critical regulator of ovulation. The PR-null mice (PRKO) failed to ovulate due to a failure in the rupture of the preovulatory follicles.

Publication Title

Ulipristal blocks ovulation by inhibiting progesterone receptor-dependent pathways intrinsic to the ovary.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48152
Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association.
  • organism-icon Homo sapiens
  • sample-icon 705 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

The identification of multiple signals at individual loci could explain additional phenotypic variance ('missing heritability') of common traits, and help identify causal genes. We examined gene expression levels as a model trait because of the large number of strong genetic effects acting in cis. Using expression profiles from 613 individuals, we performed genome-wide single nucleotide polymorphism (SNP) analyses to identify cis-expression quantitative trait loci (eQTLs), and conditional analysis to identify second signals. We examined patterns of association when accounting for multiple SNPs at a locus and when including additional SNPs from the 1000 Genomes Project. We identified 1298 cis-eQTLs at an approximate false discovery rate 0.01, of which 118 (9%) showed evidence of a second independent signal. For this subset of 118 traits, accounting for two signals resulted in an average 31% increase in phenotypic variance explained (Wilcoxon P< 0.0001). The association of SNPs with cis gene expression could increase, stay similar or decrease in significance when accounting for linkage disequilibrium with second signals at the same locus. Pairs of SNPs increasing in significance tended to have gene expression increasing alleles on opposite haplotypes, whereas pairs of SNPs decreasing in significance tended to have gene expression increasing alleles on the same haplotypes. Adding data from the 1000 Genomes Project showed that apparently independent signals could be potentially explained by a single association signal. Our results show that accounting for multiple variants at a locus will increase the variance explained in a substantial fraction of loci, but that allelic heterogeneity will be difficult to define without resequencing loci and functional work.

Publication Title

Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15745
Abundant Quantitative Trait Loci for CpG Methylation and Expression Across Human Brain Tissues
  • organism-icon Homo sapiens
  • sample-icon 584 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We describe a set of integrated experiments designed to investigate the effects of common genetic variability on DNA methylation, mRNA expression and microRNA (miRNA) expression in four distinct human brain regions. We show that brain tissues may be readily distinguished based on methylation status or expression profile. We find an abundance of genetic cis regulation mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation. We observe that the largest magnitude effects occur across distinct brain regions. We believe these data, which we have made publicly available, will be useful in understanding the biological effects of genetic variation.

Publication Title

Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP142503
BET bromodomain dependency in EWS/ETS driven Ewing Sarcoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The pathognomonic EWS/ETS fusion transcription factors drive Ewing sarcoma (EWS) by orchestrating an oncogenic transcription program. Therapeutic targeting of EWS/ETS has not been successful; therefore identifying mediators of the EWS/ETS function could offer new therapeutic targets. Here we describe the dependency of chromatin reader BET bromodomain proteins in EWS/ETS driven transcription and investigate the potential of BET inhibitors in treating this lethal cancer. Similar to EWS/ETS fusions, knockdown of BET proteins BRD2/3/4 severely impaired the oncogenic phenotype of EWS cells. Notably, EWS/FLI1 and EWS/ERG was found to be in a transcriptional complex consisting of BRD4. RNA-Seq analysis upon BRD4 knockdown or its pharmacologic inhibition by the BET inhibitor JQ1 revealed an attenuated EWS/ETS transcriptional signature. In contrast to other reports, JQ1 reduced proliferation, and induced apoptosis through MYC-independent mechanism without affecting EWS/ETS protein levels, which was further confirmed by depleting BET proteins using PROTAC-BET degrader (BETd). Interestingly, polycomb repressive complex 2 (PRC2) associated factor PHF19 was downregulated by JQ1/BETd or BRD4 knockdown in multiple EWS cells. ChIP-seq analysis revealed occupancy of EWS/FLI1 at a distal regulatory element of PHF19 and its subsequent knockdown resulted in downregulation of PHF19 expression. Furthermore, deletion of PHF19 by CRISPR-Cas9 system lead to a decreased tumorigenic phenotype and increased sensitivity to JQ1. Importantly, PHF19 expression was associated with worse prognosis of Ewing sarcoma patients. In vivo, JQ1 demonstrated anti-tumor efficacy in multiple mouse xenograft models of EWS. Together, these results indicate that EWS/ETS require BET epigenetic reader proteins for its transcriptional program including PHF19 expression, which can be mitigated by BET inhibitors. Moreover, this study provides a clear rationale for the clinical utility of BET inhibitors in treating Ewing sarcoma. Overall design: Gene epxression by RNAseq in the ewing sarcoma cell lines with knockdown of EWS-FLI1, BRD4 or JQ1 treament, knockout of PHF19

Publication Title

EWS/ETS-Driven Ewing Sarcoma Requires BET Bromodomain Proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE36110
A 3'-UTR KRAS-variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma.
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine the differential expression of KRAS-variant HNSCC (head and neck squamous cell carcinoma) cell lines.

Publication Title

A 3'-UTR KRAS-variant is associated with cisplatin resistance in patients with recurrent and/or metastatic head and neck squamous cell carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact