refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 184 results
Sort by

Filters

Technology

Platform

accession-icon GSE63693
Prostate Cancer Risk SNPs enriched in Androgen Receptor Binding Sites
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.

Publication Title

Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE70353
Subcutaneous adipose tissue gene expression from men that are part of the METSIM study
  • organism-icon Homo sapiens
  • sample-icon 770 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

We analyzed samples from 770 male human subjects who are part of the METSIM study. Ethics Committee of the Northern Savo Hospital District approved the study. All participants gave written informed consent. The population-based cross-sectional METSIM study included 10 197 men, aged from 45 to 73 years, who were randomly selected from the population register of the Kuopio town in eastern Finland (population 95000). Every participant had a 1-day outpatient visit to the Clinical Research Unit at the University of Kuopio, including an interview on the history of previous diseases and current drug treatment and an evaluation of glucose tolerance and cardiovascular risk factors. After 12 h of fasting, a 2 h oral 75 g glucose tolerance test was performed and the blood samples were drawn at 0, 30 and 120 min. Plasma glucose was measured by enzymatic hexokinase photometric assay (Konelab Systems reagents; Thermo Fischer Scientific, Vantaa, Finland). Insulin was determined by immunoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens Medical Solutions Diagnostics, Tarrytown, NY, USA). Height and weight were measured to the nearest 0.5 cm and 0.1 kg, respectively. Waist circumference (at the midpoint between the lateral iliac crest and lowest rib) and hip circumference (at the level of the trochanter major) were measured to the nearest 0.5 cm. Body composition was determined by bioelectrical impedance (RJL Systems) in subjects in the supine position.

Publication Title

Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE38448
Independence of Repressive Histone Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE38410
Independence of Repressive Histone Marks and Chromatin Compaction during Senescent Heterochromatic Layer Formation (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into non-overlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of pre-senescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.

Publication Title

Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE26443
Characterization of gene expression profile in developing soybean seeds by DNA microarray
  • organism-icon Glycine max
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Gene expression profiles in soybean seeds at 4 developmental stages, pod, bean 2 mm, bean 5 mm, and full-sized bean, were examined by DNA microarray analysis. Total genes of each samples were classified into 4 clusters according to developmental stages. Differentially expressed genes (DEGs) were extracted by comparing their expression in two adjacent stages, by using the rank product method.

Publication Title

Global gene expression profiles in developing soybean seeds.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42678
Human epidermal neural crest stem cells (hEPI-NCSC) - expanded versus pre-differentiated into neural stem cell-like cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

hEPI-NCSC are neural crest derived multipotent somatic stem cells that persist in hair follicle stem cell niche, termed the bulge, and persist into adulthood (Clewes O et al, 2011). The purpose of this project was to generate two gene expression profiles, (1) of ex vivo expanded hEPI-NCSC (XP) and (2) of cells, whihc after expansion were grown in a culture medium (NP1), which was empirically designed to pre-differentiate the multipotent stem cells into neural stemcell like cells.

Publication Title

Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE22158
Expression of the Stress-Related Genes for Glutathione S-Transferase and Ascorbate Peroxidase in the Most-Glycinin-Deficient Soybean Cultivar Tousan205 during Seed Maturation.
  • organism-icon Glycine max
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Global analyses on gene expression profiles in two soybean species, Nanahomare and Tamahomare was performed using DNA microarray technique. Nanahomare is glycinin deficient species, and is high in free amino acid content. Tamahomare is parent species of Nanahomare.

Publication Title

Expression of the stress-related genes for glutathione S-transferase and ascorbate peroxidase in the most-glycinin-deficient soybean cultivar Tousan205 during seed maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60652
Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Metabolism is tightly coupled with the process of aging, and tumorigenesis. However, the mechanisms regulating metabolic properties in different contexts remain unclear. Cellular senescence is widely recognized as an important tumor suppressor function and accompanies metabolic remodeling characterized by increased mitochondrial oxidative phosphorylation (OXPHOS). Here we showed retinoblastoma (RB) is required for the increased OXPHOS in oncogene-induced senescent (OIS) cells. Combined metabolic and gene expression profiling revealed that RB mediated activation of the glycolytic pathway in OIS cells, causing upregulation of several glycolytic genes and concomitant increases in the levels of associated metabolites in the glycolytic pathway. Knockdown of these genes by small interfering RNAs (siRNAs) resulted in decreased mitochondrial respiration, suggesting that RB-mediated glycolytic gene activation promotes metabolic flux into the OXPHOS pathway. These results suggest that coordinate transcriptional activation of metabolic genes by RB enables OIS cells to maintain metabolically bivalent states that both glycolysis and OXPHOS are highly active. Collectively, our findings demonstrated a previously unrecognized function of RB in OIS cells.

Publication Title

Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP032812
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Chromatin-based functional genomic analyses and genomewide association studies (GWASs) together implicate enhancers as critical elements influencing gene expression and risk for common diseases. Here, we performed systematic chromatin and transcriptome profiling in human pancreatic islets. Integrated analysis of islet data with those generated by the ENCODE project in nine cell types identified specific and significant enrichment of type 2 diabetes and related quantitative trait GWAS variants in islet enhancers. Our integrated chromatin maps reveal that most enhancers are short (median = 0.8 kb). Each cell type also contains a substantial number of more extended (=3 kb) enhancers. Interestingly, these stretch enhancers are often tissue-specific and overlap locus control regions, suggesting that they are important chromatin regulatory beacons. Indeed, we show that (i) tissue specificity of enhancers and nearby gene expression increase with enhancer length; (ii) neighborhoods containing stretch enhancers are enriched for important cell type-specific genes; and (iii) GWAS variants associated with traits relevant to a particular cell type are more enriched in stretch enhancers compared with short enhancers. Reporter constructs containing stretch enhancer sequences exhibited tissue-specific activity in cell culture experiments and in transgenic mice. These results suggest that stretch enhancers are critical chromatin elements for coordinating cell type-specific regulatory programs and that sequence variation in stretch enhancers affects risk of major common human diseases. Overall design: Integrated analysis of islet chromatin modification and transcriptome data with those generated by the ENCODE project. NISC Comparative Sequencing Program

Publication Title

Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP032743
Identification of transcripts altered upon LIN-41 knockdown in human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To identify transcripts altered upon LIN-41 knockdown, we transfected either a control siRNA or one of two different LIN-41 siRNAs into human embryonic stem cells and collected total RNA 72 hours after transfection. Overall design: We compared transcript levels between control siRNA or LIN-41 siRNA treated cells.

Publication Title

The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact