refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE8391
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2), Affymetrix Drosophila Genome Array (drosgenome1)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7646
CLK targets from fly heads
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

CLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7652
Timepoints Control strain
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoint microarray from control strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7651
Timepoints 5073 strain
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

6 Timepoints from 5073 strain

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7644
CLKGR in S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Experiments performed in S2 cells to identify direct CLK targets

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7653
S2 cells transfected with Clk
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

S2 cells transfected with pAc-Clk or empty vector

Publication Title

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17629
Circadian analysis of miRNAs and their targets
  • organism-icon Drosophila melanogaster
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A role for microRNAs in the Drosophila circadian clock.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE11597
Expression data from chicken B cell lymphoma (DT40) cell lines.
  • organism-icon Gallus gallus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Global gene expression profiling of the avian B-lymphoma DT40 cell line was used as a model to differentiate among Btk KO and Btk KO cells reconstituted with human Btk. Differences in the gene expression pattern showed statistically significant changes between parental DT40 and all the Btk KO cell populations irrespective of whether they are reconstituted or not. These results imply that in the process of generating a knockout cell line, subclones are selected, which have multiple changes in their gene expression pattern (p<0.01).

Publication Title

Expression profiling of chicken DT40 lymphoma cells indicates clonal selection of knockout and gene reconstituted cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043074
Gene expression changes after loss of C/EBPa in transformed HSCs [CEBPA RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq characterization of gene expression changes 72 hours after genomic excision of Cebpa in murine hematopoietic progenitors from Cebpaf/f;CreER mice transformed by Hoxa9/Meis1. In the presence of tamoxifen (4OHT), Cre-ER localizes to the nucleus of cells allowing for excision of Cebpa and loss of C/EBPa protein levels. Loss of C/EBPa leads to a decrease in cellular proliferation. Overall design: Examination of gene expression by RNAseq in two conditions in biological replicates.

Publication Title

C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043077
Gene expression changes after loss of Hoxa9 in transformed HSCs [HOXA9 RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Characterization of gene expression changes 72 hours after withdrawal of tamoxifen in murine hematopoietic progenitors transformed by Hoxa9-ER/Meis1 using RNAseq. In the presence of tamoxifen (4OHT), Hoxa9-ER localizes to the nucleus of cells allowing for transformation, while withdrawal of 4OHT (culture in EtOH) leads to loss of nuclear Hoxa9-ER. Loss of Hoxa9-ER leads to a decrease in cellular proliferation and differentiation along the myeloid lineage. Overall design: Examination of gene expression by RNAseq in two conditions in biological replicates.

Publication Title

C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact