refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 49 results
Sort by

Filters

Technology

Platform

accession-icon GSE61246
Expression data from yeast heterologously expressing ENaC, CFTR or Kir2.1
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61244
Expression data from yeast heterologously expressing ENaC, CFTR or Kir2.1 [CFTR]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to the ER associated degradation pathway, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when ENaC or CFTR were expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and when compared to previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.

Publication Title

Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61243
Expression data from yeast heterologously expressing ENaC, CFTR or Kir2.1 [ENaC]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to the ER associated degradation pathway, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when ENaC or CFTR were expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and when compared to previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.

Publication Title

Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61245
Expression data from yeast heterologously expressing ENaC, CFTR or Kir2.1 [Kir2.1]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to the ER associated degradation pathway, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when ENaC or CFTR were expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and when compared to previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.

Publication Title

Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186903
Profiling the transcriptome of human thymic epithelial cell subsets
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA-seq libraries were generated on thymic epithelial cell (TEC) subsets from thymic samples (11 days to 3 months of age). Cells were sorted to isolate cortical TEC (cTEC), MHC low medullary TEC (mTEClo) and MHC high medullary TEC (mTEChi). Between 7,575 and 50,000 cells were isolated for each sample. TEC were isolated using CD45 MACS depletion followed by the sorting protocol described in Stoeckler et al. J Vis Exp 2013 (PMID 24084687; doi: 10.3791/50951). The study has been granted ethical approval and is publicly listed (IRAS ID 156910, CPMS 19587). Overall design: 1 sample for each of cTEC, mTEClo and mTEChi were generated on a total of 3 individuals (~50,000 cells per sample) and 3 replicates for each of cTEC, mTEClo and mTEChi were generated on 1 individual (7,575 cells per sample)

Publication Title

Keratinocyte growth factor impairs human thymic recovery from lymphopenia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP061522
Truncation of LOC100288798 (SLC38A4-AS) lncRNA in human haploid KBM7 cell line
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation

Publication Title

A human haploid gene trap collection to study lncRNAs with unusual RNA biology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20085
Expression data from parental MDA-MB-231 cells and MDA-MB-231(SA) variant
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidence for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.

Publication Title

Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE46203
Transcriptional effects of CTGF inhibition and gemcitabine in the KPC mouse model of pancreatic ductal adenocarcinoma
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA microenvironment promote chemotherapy delivery and improve anti-neoplastic responses in murine models of PDA. Here, we employed the FG-3019 monoclonal antibody directed against the pleiotropic matricellular signaling molecule connective tissue growth factor (CTGF/CCN2). FG-3019 treatment increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. Microarray expression profiling revealed the down-regulation by FG-3019 of several anti-apoptotic transcripts, including the master regulator Xiap, down-regulation of which has been shown to sensitize PDA to gemcitabine. Decreases in XIAP protein by FG-3019 in the presence and absence of gemcitabine were confirmed by immunoblot, while increases in XIAP protein were seen in PDA cell lines treated with recombinant CTGF. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models and, by extension, PDA patients.

Publication Title

CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE43521
Genome-wide expression profiling of SGTA knockdown in C4-2B prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Identifying the effect of the co-chaperone SGTA on global androgen receptor transcriptional activity in C4-2B prostate cancer cells with view to further elucidating the broader biological role of SGTA on other signaling pathways within prostate cancer cells

Publication Title

Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE34072
Valproic acid achieves its anticancer activity by re-expression of cyclin D2
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study we could show that the treatment of primary murine prostate cancer(PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma ofmouse prostate) model with the histone deacetylase inhibitor (HDI) valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 as a family member of the highly conserved Dtype cyclins in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. The observed cyclin D2 re-expression in cancer cells is activated by an increase of histone acetylation in the promoter region of the cyclin D2 gene and might be the underlying molecular mechanism of the inhibition of proliferation of cancer cells after VPA treatment. Taken together, our results confirm VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression.

Publication Title

Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact