refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 39 results
Sort by

Filters

Technology

Platform

accession-icon SRP111340
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single cell resolution using RNA sequencing [Smart-seq]
  • organism-icon Danio rerio
  • sample-icon 246 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Recent advances in single-cell transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. Here, we utilized massively parallel single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally-distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune cell deficiencies within prkdcD3612fs, il2rgaY91fs and double homozygous mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types including two classes of natural killer immune cells, classically-defined and erythroid-primed hematopoietic stem and progenitor cells, mucin secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first comprehensive single cell transcriptomic analysis of kidney and marrow cells in the adult zebrafish. Overall design: The goal of our study is to establish the transcriptional profiles of hematopoietic and kidney cell lineages residing in the zebrafish whole kidney marrow. Firstly, we performed single-cell RNA sequencing by a modified Smart-seq2 protocol on sorted single cells from fluorescent transgenic zebrafish lines, which label distinct blood cell types (n = 246 cells total). Secondly, we utilized droplet-based single-cell RNA sequencing (inDrop) to investigate unmarked, comprehensive hematopoietic lineage structure within wild-type, casper-strain zebrafish (N=3 animals, n=3,782 cells total). From this, we identified ten distinct hematopoietic groups of blood and immune identities. Thirdly, we confirmed blood lineage interpretations by comparing hematopoietic lineages within wild-type fish with mutant zebrafish with known immunodeficiencies, including prkdc(D3612fs) (N=3 animals, n=3,201 cells), il2rga(Y91fs) (N=2 animals, n=2,068 cells) and prkdc(D3612fs), il2rga(Y91fs) double compound mutant fish (N=2 animals, n=2,276 cells). Lastly, we identified seven structural and functional cell lineages of kidney identities in the whole kidney marrow (n=1,699 kidney cells).

Publication Title

Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP111341
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single cell resolution using RNA sequencing [bulk RNA-seq]
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Recent advances in single-cell transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. Here, we utilized massively parallel single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally-distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune cell deficiencies within prkdcD3612fs, il2rgaY91fs and double homozygous mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types including two classes of natural killer immune cells, classically-defined and erythroid-primed hematopoietic stem and progenitor cells, mucin secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first comprehensive single cell transcriptomic analysis of kidney and marrow cells in the adult zebrafish. Overall design: The goal of our study is to establish the transcriptional profiles of hematopoietic and kidney cell lineages residing in the zebrafish whole kidney marrow. Firstly, we performed single-cell RNA sequencing by a modified Smart-seq2 protocol on sorted single cells from fluorescent transgenic zebrafish lines, which label distinct blood cell types (n = 246 cells total). Secondly, we utilized droplet-based single-cell RNA sequencing (inDrop) to investigate unmarked, comprehensive hematopoietic lineage structure within wild-type, casper-strain zebrafish (N=3 animals, n=3,782 cells total). From this, we identified ten distinct hematopoietic groups of blood and immune identities. Thirdly, we confirmed blood lineage interpretations by comparing hematopoietic lineages within wild-type fish with mutant zebrafish with known immunodeficiencies, including prkdc(D3612fs) (N=3 animals, n=3,201 cells), il2rga(Y91fs) (N=2 animals, n=2,068 cells) and prkdc(D3612fs), il2rga(Y91fs) double compound mutant fish (N=2 animals, n=2,276 cells). Lastly, we identified seven structural and functional cell lineages of kidney identities in the whole kidney marrow (n=1,699 kidney cells).

Publication Title

Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33417
Global analysis of mRNA decay in induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Expression data from human induced pluripotent stem cells(iPSCs) and Human foreskin fibroblasts (HFFs) with treatment actinomycin D

Publication Title

Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP161184
Single-cell RNA-seq of NR5A1-eGFP positive cells of the developing mouse ovary from E10.5 to P6
  • organism-icon Mus musculus
  • sample-icon 559 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: We performed a time-course single-cell RNA-seq of the somatic cells of the XX mouse gonads to study the cell population heterogeneity and the genetic program during their differentiation. Methods: We collected gonads from NR5A1-eGFP transgenic embryos at six embryonic stages: E10.5, E11.5, E12.5, E13.5, E16.5 and P6. Methods: Cells were capture with the C1 autoprep system and cDNA sequenced with Illumina HiSeq 2000. Results: One cell population was detected at E10.5 and give rise to both Granulosa and steroidogenic precursor cells. A precursor cell population remains undifferentiated at P6 and are likely to be theca cell precursors. Conclusion: Our study is, to date, the most granular transcriptomic study of the developing mouse ovary and provide a more complete model of somatic cell differentiation during female sex determination. Overall design: 663 cells were collected in total. 71 cells at E10.5, 106 cells at E11.5, 164 cells at E12.5, 106 cells at E13.5, 95 cells at E16.5, and 121 at P6. We performed two independent captures for each embryonic stage to reach a reasonable number of cells except for E10.5 where we capture enough cells in one experiment.

Publication Title

Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE146650
Gene expression profiling of mouse uterine stromal cells isolated on day 5 of pregnancy
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Our study revealed that hypoxia inducible factor 2 alpha, Hif2 alpha, is a downstream target of estrogen signaling in mouse uterine stroma at the time of implantation. Further, conditional deletion of Hif2 alpha in mouse uterus leads to infertility due to impaired epithelial remodeling at the time of implantation.

Publication Title

A hypoxia-induced Rab pathway regulates embryo implantation by controlled trafficking of secretory granules.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE34963
The Polycomb Repressive Complex 2 Is Required For MLL-AF9 Leukemia
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34209
Transcriptome analysis of genes regulated by overexpression of LATERAL ORGAN BOUNDARIES (LOB) in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The Arabidopsis thaliana transcription factor LATERAL ORGAN BOUNDARIES (LOB) is expressed in the boundary between the shoot apical meristem and initiating lateral organs. To identify genes regulated by LOB activity, we used an inducible 35S:LOB-GR line. This analysis identified genes that are differentially expressed in response to ectopic LOB activity.

Publication Title

Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE34959
Expression profiling of primary wild type (WT), Ezh2-null and Eed-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We evaluated gene expression changes in murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of homozygous conditional alleles for Ezh2 or Eed, both of which are components of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE34961
Expression profiling of secondary wild type (WT) and Ezh2-null murine MLL-AF9 AML
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We evaluated gene expression changes in secondary recipient murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of a homozygous conditional allele for Ezh2, a component of the Polycomb Repressive Complex2.

Publication Title

Polycomb repressive complex 2 is required for MLL-AF9 leukemia.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP125269
Analysis of gene expression in populations of adult undifferentiated spermatogonia [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 3000

Description

The undifferentiated spermatogonial population of mouse testis is known to be functionally heterogeneous and contain both stem cells and committed progenitor cells. However, gene expression patterns marking these distinct cell fractions are poorly defined. We found that a subset of undifferentiated spermatogonia were marked by expression of a PDX1-GFP transgene but properties of these cells were unclear. Undifferentiated cells were therefore isolated from adult testes and separated according to expression of PDX1-GFP+ for gene expression analysis by RNA-seq. Our goal was to identify differentially expressed genes from PDX1-GFP+ vs PDX1-GFP- with that of known markers of stem and committed progenitor cells. Overall design: 4 independent sets of PDX1-GFP-positive and PDX1-GFP-negative undifferentiated spermatogonia were isolated by flow sorting from adult mouse testes.

Publication Title

Identification of dynamic undifferentiated cell states within the male germline.

Sample Metadata Fields

Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact