refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE5938
Expression data for filamentous-form yeast with genetic perturbations
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

We construced combinations of genetic deletions to infer genetic interactions in genomic expression data.

Publication Title

Prediction of phenotype and gene expression for combinations of mutations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57677
Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

IL13R2 overexpression promotes metastasis of basal-like breast cancers

Publication Title

Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP125882
Transcriptomic analysis to map mechanisms of viral replication control in HIV-1 positive Elite Controllers
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In order to understand the underlying mechanisms, which ensure that disease progression is prevented in EC, a comprehensive analysis of clinical phenotypes coupled to genetics and biomolecular mechanisms is required. The rapidly increasing accessibility of genetic and biomolecular expression data from new high-throughput technologies is the foundation to shift the traditional phenotype-first approach to explorative genetic or molecular data-first approaches. In this study, we aimed to explore a comprehensive analysis of host transcriptomics and proteomics data coupled to clinical phenotypes in a well-defined Swedish EC cohort with up to 20 years of clinical follow-up data.

Publication Title

Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Race

View Samples
accession-icon GSE64957
Microarray study of human adrenal zona glomerulosa (ZG), zona fasciculata (ZF) and aldosterone-producing adenomas (APA)
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Learn about the transcriptome profiling of zona glomerulosa (ZG), zona fasciculata (ZF) and aldosterone-producing adenomas (APA) in human adrenals

Publication Title

DACH1, a zona glomerulosa selective gene in the human adrenal, activates transforming growth factor-β signaling and suppresses aldosterone secretion.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP066420
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 2]
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse Mac1+ bone marrow cells from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP066416
Ezh2 and Runx1 Mutations Targeted to Early Lymphoid Progenitors Collaborate to Promote Early Thymic Progenitor Leukemia [RNA-Seq 1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Understanding the specific cell populations responsible for propagation of leukemia is an important step for development of effective targeted therapies. Recently, the lymphoid-primed multipotent progenitor (LMPP) has been proposed to be a key propagating population in acute myeloid leukemia (AML; PMID 21251617). We have also shown that LMPPs share many functional and gene expression properties with early thymic progenitors (ETPs; PMID 22344248). This finding is of particular interest as ETP leukemias have recently been described: a distinct and poor prognostic disease entity with a transcriptional profile reminiscent of murine ETPs, showing co-expression of hematopoietic stem cell (HSC) and myeloid markers (PMID 19147408). Together, this raises the question whether ETPs can act as a leukemia-initiating/propagating cell population; however, relevant disease models to test this hypothesis are currently lacking. Analysis of the genetic landscape of ETP leukemias has revealed frequent coexistence of inactivating mutations of EZH2 and RUNX1 (PMID 22237106). We therefore generated mice with deletions of Ezh2 and Runx1 specifically targeted to early lymphoid progenitors using Rag1Cre (Ezh2fl/flRunx1fl/flRag1Cre+; DKO mice). As anticipated, HSCs lacked significant recombination in DKO mice whereas close to 100% of purified ETPs (Lin-CD4-CD8-CD44+CD25-Kit+Flt3+) showed deletion of Ezh2 and Runx1. Strikingly, despite a 16-fold reduction in thymus cellularity caused by a block in thymocyte maturation at the DN2-DN3 transition, absolute numbers of ETPs within the thymus of DKO mice were markedly expanded (12-fold; p<0.0001). In contrast, Ezh2 or Runx1 deletion alone had no impact on numbers of ETPs. RNA-sequencing of the expanded ETPs in DKO mice revealed upregulation of HSC- and myeloid-associated transcriptional programs, reminiscent of ETP leukaemia e.g. Pbx1 (log2FC=3.0; p<0.0001) and Csf3r (log2FC=1.9; p=0.0038). Single-cell gene expression analysis confirmed co-expression of HSC and myeloid programs with lymphoid genes within individual DKO ETPs. Further, some key regulators of T-cell maturation which are aberrantly expressed in ETP leukemia were also disrupted in DKO ETPs e.g. Tcf7 (log2FC=-9.5; p<0.0001). Gene expression associated with aberrant Ras signalling was also present. However, despite a continued expansion of the ETP population with age, we did not observe leukemia in DKO mice with over 1 year of follow-up. Since ETP leukemias frequently feature activating mutations in genes regulating RAS signaling, we hypothesised that the expanded “pre-leukemic” ETPs in DKO mice would be primed for leukemic transformation by signalling pathway mutation. We therefore crossed DKO mice with a Flt3ITD/+ knock-in mouse line, as internal tandem duplications (ITD) of FLT3 are frequent in ETP leukemias. Ezh2fl/flRunx1fl/flRag1Cre+Flt3ITD/+ (DKOITD) mice showed dramatically reduced survival (median 9.3 weeks) resulting from an aggressive, fully penetrant acute leukemia showing a predominantly myeloid phenotype (e.g. Mac1) but with co-expression of some lymphoid antigens (e.g. intracellular CD3). Crucially, this leukaemia could be propagated in wild-type recipients upon transplantation of the expanded ETPs. DKOITD ETPs were transcriptionally very similar to DKO ETPs, retaining expression of lymphoid alongside HSC- and myeloid-associated genes. Finally, in a lympho-myeloid cell line model (EML cells) we demonstrated that Ezh2 inactivation-induced loss of H3K27me3 is associated with a corresponding increase in H3K27Ac, a transcriptional activating signal that recruits bromodomain proteins. As such, we reasoned that our ETP leukemia model might be sensitive to bromodomain inhibitors such as JQ1. Indeed, we observed high sensitivity of expanded DKOITD ETPs to JQ1, raising the possibility of a new therapeutic approach for ETP leukemias. This novel mouse model of ETP-propagated leukemia, driven by clinically relevant mutations, provides intriguing evidence that leukemias with a predominant myeloid phenotype, but co-expressing lymphoid genes, may initiate within a bona fide early lymphoid progenitor population. Since the functional characteristics of the cell of origin of a leukaemia may direct its progression and response to therapy, these findings could have important implications for future stratification and treatment of both AML and ETP leukemias. Overall design: mRNA-sequencing of mouse early thymic precursors from three genotypes

Publication Title

Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP049722
Flt3-ITD-induced extrinsic depletion of the normal hematopoietic stem cell reservoir
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Gene expression analysis of purified endothelial cells (Ecs), mesenchymal stem cells (MSCs) and mononuclear cells (MNCs) from wild-type and Flt3-ITD knock-in mice. Overall design: Differentially expressed genes analysis of haematopoietic and niche cell populations from Flt3-ITD mice

Publication Title

Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD-induced myeloproliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE114515
Post-slippage cells increase expression of factors associated with SASP.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Human transcriptome analysis of U2OS cells treated with nocodazole or DMSO (Control).

Publication Title

Autophagy Governs Protumorigenic Effects of Mitotic Slippage-induced Senescence.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48303
Expression data from aldosterone-producing adenomas (APAs) with a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of aldosterone-producing adenoma (APA) samples from patients with primary hyperaldosteronism. These APAs have a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. Results provide insight into the different mechanisms each mutation may cause leading to elevated aldosterone production in APA.

Publication Title

Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact