refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 160 results
Sort by

Filters

Technology

Platform

accession-icon SRP119095
Telomerase-expressing distributed hepatocyte stem cells repopulate the liver during homeostasis and injury
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We identified a subset of hepatocytes with high Telomerase Reverse transcriptase (Tert) that functions as the repopulating stem cells in homeostasis and injury. We performed RNA-Seq to reveal the differences of these cells and the other hepatocytes. Overall design: RNA mRNA profiles of TERT(High) and TERT (Low) hepatocytes from 2-month old mice were generated by deep sequencing, in triplicate, using Illumina platform.

Publication Title

Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon E-TABM-585
Transcription profiling by array of human lung cancer cells after treatment with dasatinib, imatinib, nilotinib or PD0325901
  • organism-icon Homo sapiens
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Cell Line: This experiment was designed to measure the transcriptional responses to four kinase inhibitors across a five-logarithm dose range. The A549 human lung cancer cell line was treated with dasatinib, imatinib or nilotinib (4 hours and 20 hours) or PD0325901 (4 hours). Treatments used a 12-point dose range (30 uM with 3-fold dilutions down to 0.17 nM; 0.5% DMSO vehicle for all treatments). Experimental design prevented row or column handling effects being confounded with dose effect.

Publication Title

Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities.

Sample Metadata Fields

Disease, Cell line, Compound, Time

View Samples
accession-icon GSE13771
The role of ERbeta2 in zebrafish neuromasts development
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13158
The role of ERbeta2 in zebrafish neuromasts development 50uM
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and hign concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.

Publication Title

Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13157
The role of ERbeta2 in zebrafish neuromasts development 15uM
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and high concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.

Publication Title

Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP100979
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.

Publication Title

HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE109864
Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To study the impact of the transcription factor NFAT5 on the vascular smooth muscle cell (VSMC) transcriptome, genetic ablation of floxed nfat5 in mouse aortic smooth muscle cells was achieved by transducing them with an adenoviral vector to express Cre-recombinase (Ad-Cre) under control of a CMV promoter.

Publication Title

Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16780
Hybrid Mouse diversity Panel Liver Expression Profile
  • organism-icon Mus musculus
  • sample-icon 288 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Novel, systems-based approach to mouse genetics.

Publication Title

A high-resolution association mapping panel for the dissection of complex traits in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38120
Aorta profiling HMDP
  • organism-icon Mus musculus
  • sample-icon 188 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Identify genes in the aorta whose expressions under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HDMP is comprised of classical inbred and recombinant inbred wild-type mice. The RMA values of genes were used for genome-wide association as described in Bennett et al. Genome Research 2010 (PMID 20054062). These data were used to identify candidate genes at loci associated with atherosclerosis.

Publication Title

High-resolution association mapping of atherosclerosis loci in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE84516
PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig
  • organism-icon Sus scrofa
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

In vivo microarray study of global gene expression changes in peripheral blood mononuclear cells (PBMCs) of Pietrain pigs during the stage of inatte immune and adaptive immune response to porcine reproductive and respiratory syndrome virus vaccination.

Publication Title

PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact