refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 160 results
Sort by

Filters

Technology

Platform

accession-icon GSE57417
Role of Blimp-1 in programing Th effector cells into IL-10 producers
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiling on IL-10-secreting and non-secreting murine Th1 cells, stimulated in the presence or absence of the Notch ligand Delta-like 4 (Dll4), was performed to identify transcription factors co-expressed with IL-10.

Publication Title

Role of Blimp-1 in programing Th effector cells into IL-10 producers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-804
Transcription profiling of human pancreas from patients with autoimmune pancreatitis and alcohol-induced chronic pancreatitis
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Autoimmune pancreatitis (AIP) is a recently identified disease of the pancreas with unknown etiology and antigens. The aim of this study was to determine new target antigens and differentially regulated genes and proteins by means of transcriptomics and proteomics and to validate them in patients with autoimmune pancreatitis. Here we report a distinct downregulation at the RNA and protein level of pancreatic proteases (anionic trypsinogen, cationic trypsinogen, mesotrypsinogen, elastase IIIB) and pancreatic stone protein in autoimmune pancreatitis in comparison to alcohol-induced chronic pancreatitis.

Publication Title

Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE30873
Effects of caspase-8 deletion in the intestinal epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Caspase-8 is a cystein protease involved in regulating apoptosis. The function of caspase-8 was studied in the intestinal epithelium, using mice with an intestinal epithelial cell specific deletion of caspase-8.

Publication Title

Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE103348
A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Embryonal Tumors with Multilayered Rosettes (ETMRs) have recently been described as a new entity of rare pediatric brain tumors with fatal outcome. We show here that ETMRs are characterized by a parallel activation of Shh- and Wnt-signaling. Co-activation of these pathways in murine neural precursors is sufficient to induce ETMR-like tumors in vivo that resemble their human counterparts based on histology and global gene expression analyses, and point to apical radial glia cells as the possible tumor cell-of-origin. Overexpression of LIN28A, which is a hallmark of human ETMRs, augments Sonic Hedgehog (Shh)- and Wnt-signaling in these precursor cells through downregulation of let7-miRNA, and LIN28A/let7a interaction with the Shh-pathway was detected at the level of Gli mRNA. Finally, human ETMR cells that were transplanted into immunocompromised host mice were responsive to the Shh-inhibitor Arsenic trioxide (ATO). Our findings provide a novel mouse model to study this tumor type, demonstrate the driving role of Wnt- and Shh-activation in the growth of ETMRs and propose downstream inhibition of Shh-signaling as a therapeutic option for patients with ETMRs.

Publication Title

A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP012461
RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-derived Stromal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Background: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal findings: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched MSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both MSCs and FBs. Further, MSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusion: Our findings suggest that stromal stem cells including adipose-derived MSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between MSCs and FBs. Overall design: A total of 91 samples were analyzed by multiplex RNA-seq. Samples represented replicates from two patients, two cell types and three differentiation protocols, as indicated by the sample annotation. 5 barcodes were unused, but the corresponding FASTQ files are included for completeness.

Publication Title

RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE63561
Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain
  • organism-icon Rattus norvegicus
  • sample-icon 192 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Background: Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems. We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods: Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freunds adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results: Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions: These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. Key words: prenatal alcohol exposure (PAE), ethanol, inflammation, arthritis, gene expression, rat.

Publication Title

Prenatal alcohol exposure alters steady-state and activated gene expression in the adult rat brain.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP059955
Characterization of pro- and anti-inflammatory activation states in embryonic stem cell derived microglia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

Embryonic stem cell derived microglia (ESdM) were treated with different inflammatory stimulants to analyze their ability to adopt different activation states. These were characterized using ELISA, flow cytometry, quantitative real time PCR, and RNA-sequencing. Overall design: Analysis of cytokine secretion, cell surface marker, gene expression, and RNA-seq expression data of differentially activated ESdM

Publication Title

Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cell-derived microglia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36575
Effect of NPAP1/C15orf2 overexpression on transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To gain insight into the function of Nuclear pore associated protein 1 (NPAP1, formerly C15orf2), we overexpressed NPAP1 in HEK293 cells. We detected no significant difference between NPAP1-expression of induced and uninduced cells in three technical replicates, exept for an approximately 10-fold increase in the NPAP1 transcript itself. This indicates that overexpression of NPAP1 does not change mRNA expression profiles of HEK293 cells. We used microarrays to investigate global gene expression changes depending on the level of NPAP1/C15orf2

Publication Title

The imprinted NPAP1/C15orf2 gene in the Prader-Willi syndrome region encodes a nuclear pore complex associated protein.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE81666
Expression data of nuclear mRNA export mutant rae1-167 cells
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

rae1 is an essential gene and encodes one of nuclear pore complex. rae1-167 mutant cells show rapid accumulation of polyA-RNA in the nucleus at 36C followed by protein accumulation, suggesting that accumulated nuclear mRNA influences nucelar cytooplasmic transport.

Publication Title

A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12211
Gene expression of CML CD34+ cells during Imatinib therapy
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Imatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.

Publication Title

Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact