refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 62 results
Sort by

Filters

Technology

Platform

accession-icon GSE29885
Expression data from amoeboid and ramified microglia isolated from the corpus callosum of 5-day and 4-week old rat brain
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Microglia, the resident immune cells of the central nervous system (CNS), have two distinct phenotypes in the developing brain: amoeboid form, known to be amoeboid microglial cells (AMC) and ramified form, known to be ramified microglial cells (RMC) alongside several intermediate forms. The AMC are characterized by being proliferative, phagocytic and migratory whereas the RMC are quiescent and exhibit a slow turnover rate. The AMC transform into RMC with advancing age, and this transformation is indicative of the gradual shift in the microglial functions. Both AMC and RMC respond to CNS inflammation, and they become hypertrophic when they are activated by trauma, infection or neurodegenerative stimuli. The molecular mechanisms and functional significance of morphological transformation of microglia during normal development and in disease conditions is not clear. It is hypothesized that AMC and RMC are functionally regulated by a specific set of genes encoding various signaling molecules and transcription factors. To address this, we carried out cDNA microarray analysis using lectin-labeled AMC and RMC isolated from frozen tissue sections of the corpus callosum of 5-day and 4-week old rat brain respectively, by laser capture microdissection (LCM). The global gene expression profiles of both microglial phenotypes were compared and the differentially expressed genes in AMC and RMC were clustered based on their functional annotations. This genome wide comparative analysis helps in identifying genes that are specific to AMC and RMC. The novel and specific molecules identified in both microglial phenotypes can be targeted for therapeutic purposes in developing and adult brain diseases.

Publication Title

Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66072
Mcl-1 is a key determinant of breast cancer cell survival
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE66071
Mcl-1 is a key determinant of breast cancer cell survival [expression]
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

mRNA expression profile of cultured Breast Cancer cell line measured by Affymetrix microarrays

Publication Title

MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE61659
Cross-species genomics identifies postanatal CPE as novel choroid plexus carcinoma oncogenes.
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Choroid plexus carcinomas (CPC) are poorly understood and frequently lethal brain tumors with minimal treatment options. Using a new mouse model of the disease and a large cohort of human CPCs [GSE60892; GSE60899], we performed a cross-species, genome-wide search for novel oncogenes within syntenic regions of chromosome gain. TAF12, NFYC and RAD54L, co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3, were identified as oncogenes that are gained in tumors in both species and required to initiate and progress the disease in mice. TAF12 and NFYC are transcription factors that regulate the epigenome, while RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained, novel oncogenes that cooperate in the formation of CPC and unmask potential new avenues for therapy.

Publication Title

Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076926
Analysis of kidney macrophages'' gene expression at steady state
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene expression (RNAseq) from isolated kidney macrophages injetced i.v. with PBS Overall design: C57BL/6J mice were injected i.v. with PBS. One hour after injection, kidney macrophages were isolated (sorted by FACS) for gene expression analysis.

Publication Title

Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE10841
SCLC cell line profiling on HG-U133A arrays set 2
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

RNA expression analysis was performed to compare patterns to sensitivity to BCL2 inhibitors (ABT-263).

Publication Title

ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10532
Comparison of CpG and TDB induced activation patterns in macrophages.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Bone marrow derived macrophages 1 M CpG or 20 g/ml TDB, an analogon to the mycobacterial cord factor TDM for 8h, 24h, 48h and 72h respectively.

Publication Title

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10530
Card9 dependent activation of macrophages by TDB
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Bone marrow derived macrophages from wt and card9 KO mice were stimulated with CpG, Curdlan or TDB, an analogon to the mycobacterial cord factor TDM for 48h, respectively.

Publication Title

Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52227
Discovery of genes involved in facial midline specification
  • organism-icon Gallus gallus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The patterning of the facial midline involves early specification of neural crest cells to form skeletal tissues that support the upper jaw . In order to understand the molecular mechanisms involved we have taken advantage of a beak duplication model developed in the chicken embryo. Here we can induce the transformation of the side of the beak into a second midline that is easily identifiable by the formation of a supernumerary egg tooth. The phenotype is induced by implanting two microscopic beads, one soaked in retinoic acid and the other soaked in Noggin into the side of the head of the chicken embryo. Here we use microarrays to profile expression of maxillary mesenchyme 16h after placing the beads. A subset of genes were validated using in situ hybridization and QPCR. The aims of the study are to test the function of these genes using retroviral transgenesis, knockdown with morpholinos or expression of secreted proteins and their application to the embryo.

Publication Title

Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18477
Normal expression of facial prominences in stage 18 chicken embros
  • organism-icon Gallus gallus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The face is one of the three regions most frequently affected by congenital defects in humans. In order to understand the molecular mechanisms involved it is necessary to have a more complete picture of gene expression in the embryo. Here we use microarrays to profile expression in chicken facial prominences, post neural crest migration and prior to differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative PCR and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.

Publication Title

Whole genome microarray analysis of chicken embryo facial prominences.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact